【題目】設(shè)函數(shù)

①若有兩個零點,則實數(shù)的取值范圍是 ___________;

②若,則滿足 的取值范圍是 _________________

【答案】

【解析】①若a=0,則,

f(x)=0,可得x=0,x=﹣,符合題意;

a0,x=0符合題意;

x=﹣符合題意,則a,即為﹣a0;

a0,則x=0x=﹣符合題意,可得a

綜上可得,a的范圍是(﹣,]

②若xa﹣2,則x﹣1a﹣1﹣3,

f(x)的導(dǎo)數(shù)為3x2﹣30,

可得f(x)f(﹣2)=﹣2,f(x﹣1)﹣27+9=﹣18,

即有f(x)+f(x﹣1)﹣30,不符題意;

xa,若x﹣1a,f(x)+f(x﹣1)﹣3,

即為x+x﹣1﹣3,解得x﹣1;

a﹣1x﹣1a,f(x)+f(x﹣1)﹣3,

即為x+(x﹣1)3﹣3(x﹣1)﹣3,

化為x3﹣3x2+x+50,

由于a﹣2,且axa+1,

可得g(x)=x3﹣3x2+x+5的導(dǎo)數(shù)g′(x)=3x2﹣6x+10,

g(x)在[a,a+1)遞增,g(a)取得最小值,且為a3﹣3a2+a+5,

a3﹣3a2+a+5,

而在a﹣2時,a3﹣3a2+a+5遞增,且為負(fù)值,不符題意.

綜上可得a的范圍是(﹣1,+∞).

故填,(﹣1,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺對某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機抽樣的方法抽取了100人,其消費金額 (百元)的頻率分布直方圖如圖所示:

(1)求網(wǎng)民消費金額的平均值和中位數(shù);

(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費與性別有關(guān);

合計

30

合計

45

附表:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某外商到一開發(fā)區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經(jīng)費12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元。設(shè)表示前年的純收入(年的總收入一前年的總支出一投資額)

(1)試寫出的關(guān)系式.

(2) 該開發(fā)商從第幾年開始獲利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下面類比推理:

①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.

其中結(jié)論正確的個數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以“你我中國夢,全民建小康”為主題“社會主義核心價值觀”為主線,為了解、兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準(zhǔn)備工作的滿意程度,對、地區(qū)的名觀眾進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下:

非常滿意

滿意

合計

合計

在被調(diào)查的全體觀眾中隨機抽取名“非常滿意”的人是地區(qū)的概率為,且.

(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進(jìn)行問卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少?

(2)在(1)抽取的“滿意”的觀眾中,隨機選出人進(jìn)行座談,求至少有兩名是地區(qū)觀眾的概率?

(3)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系?

附:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動。在1859年的時候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))

A. 768 B. 144 C. 767 D. 145

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量y(千輛/小時)與汽車的平均速度v(千米/小時)之間的函數(shù)關(guān)系為:.

1)在該時段內(nèi),當(dāng)汽車的平均速度為多少時,車流量最大?最大車流量為多少?(保留分?jǐn)?shù)形式)

2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應(yīng)在什么范用內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各對事件中,不互為相互獨立事件的是(

A.擲一枚骰子一次,事件“出現(xiàn)偶數(shù)點”;事件“出現(xiàn)3點或6點”

B.袋中有3白、2黑共5個大小相同的小球,依次有放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到白球”

C.袋中有3白、2黑共5個大小相同的小球,依次不放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到黑球”

D.甲組3名男生,2名女生;乙組2名男生,3名女生,現(xiàn)從甲、乙兩組中各選1名同學(xué)參加演講比賽,事件“從甲組中選出1名男生”,事件“從乙組中選出1名女生”

查看答案和解析>>

同步練習(xí)冊答案