【題目】以“你我中國夢,全民建小康”為主題“社會主義核心價值觀”為主線,為了解兩個地區(qū)的觀眾對2018年韓國平昌冬奧會準備工作的滿意程度,對、地區(qū)的名觀眾進行統(tǒng)計,統(tǒng)計結(jié)果如下:

非常滿意

滿意

合計

合計

在被調(diào)查的全體觀眾中隨機抽取名“非常滿意”的人是地區(qū)的概率為,且.

(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進行問卷調(diào)查,則應抽取“滿意”的、地區(qū)的人數(shù)各是多少?

(2)在(1)抽取的“滿意”的觀眾中,隨機選出人進行座談,求至少有兩名是地區(qū)觀眾的概率?

(3)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系?

附:

,

【答案】(1)見解析;(2);(3)見解析.

【解析】試題分析:(1)先根據(jù)概率計算的值,得出,再計算的值,根據(jù)比例得出應抽取“滿意”的A、B地區(qū)的人數(shù);
(2)根據(jù)二古典概型的概率公式計算至少有兩名是地區(qū)觀眾的概率

(3)根據(jù)獨立性檢驗公式計算觀測值k2,從而得出結(jié)論;

試題解析:(1)由題意,得,∴,∴

因為,所以.

則應抽取地區(qū)的“滿意”觀眾,抽取地區(qū)的“滿意”觀眾.

(2)所抽取的地區(qū)的“滿意”觀眾記為,,所抽取的地區(qū)的“滿意”觀眾記為,.

則隨機選出三人的不同選法有,,,,,,,,,共個結(jié)果.

至少有兩名是地區(qū)的結(jié)果有個,其概率為

(3)

非常滿意

滿意

合計

合計

由表格

所以沒有的把握認為觀眾的滿意程度與所在地區(qū)有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:

[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.

(1)列出樣本的頻率分布表.

(2)畫出頻率分布直方圖.

(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內(nèi)的可能性約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解校園安全教育系列活動的成效,對全市高中生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化,現(xiàn)隨機抽取部分高中生的答卷,統(tǒng)計結(jié)果如下,對應的頻率分布直方圖如圖所示.

等級

不合格

合格

得分

[2040

[40,60

[60,80

[80100

頻數(shù)

12

48

24

1)求、的值;

2)估計該市高中生測試成績評定等級為“合格”的概率;

3)在抽取的答卷中,用分層抽樣的方法,從評定等級為“合格”和“不合格”的答卷中抽取5份,再從這5份答卷中任取2份,求恰有1份評定等級為“不合格”的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】進入12月以業(yè),在華北地區(qū)連續(xù)出現(xiàn)兩次重污染天氣的嚴峻形勢下,我省堅持保民生,保藍天,各地嚴格落實機動車限行等一系列“管控令”,某市交通管理部門為了了解市民對“單雙號限行”的態(tài)度,隨機采訪了200名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

90

20

110

有私家車

70

40

110

合計

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過的前提下認為“對限行的態(tài)度與是否擁有私家車有關”;

(2)為了了解限行之后是否對交通擁堵、環(huán)境染污起到改善作用,從上述調(diào)查的不贊同限行的人員中按是否擁有私家車分層抽樣抽取6人,再從這6人中隨機抽出3名進行電話回訪,求3人中至少有1人沒有私家車的概率.

附: ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

①若有兩個零點,則實數(shù)的取值范圍是 ___________;

②若,則滿足 的取值范圍是 _________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,求函數(shù)的單調(diào)區(qū)間與極值;

(2)若在區(qū)間上至少存在一點,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形中,都是等腰直角三角形且,正方形的邊.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖所示,拋物線軸所圍成的區(qū)域是一塊等待開墾的土地,現(xiàn)計劃在該區(qū)域內(nèi)圍出一塊矩形地塊ABCD作為工業(yè)用地,其中A、B在拋物線上,C、D在軸上.已知工業(yè)用地每單位面積價值為,其它的三個邊角地塊每單位面積價值元.

(1)等待開墾土地的面積;

(2)如何確定點C的位置,才能使得整塊土地總價值最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段,的中點,

(1)證明:平面

(2)求F到平面的距離.

查看答案和解析>>

同步練習冊答案