【題目】如圖,在平面四邊形中,都是等腰直角三角形且,正方形的邊.

(1)求證:平面;

(2)求二面角的余弦值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】試題分析:

(1)由線面垂直的判斷定理可得平面由平面幾何知識(shí)可得,據(jù)此有平面

(2)由題意可知ADAB,AE兩兩垂直.建立空間直角坐標(biāo)系,設(shè)AB=1,據(jù)此可得平面BDF的一個(gè)法向量為,取平面ABD的一個(gè)法向量為則二面角的余弦值為

試題解析:

(1)正方形中,

,所以

因?yàn)?/span>都是等腰直角三角形,

所以,

,且

所以

(2)因?yàn)椤?/span>ABE是等腰直角三角形,所以,

又因?yàn)?/span>,所以,

ADAB,AE兩兩垂直.建立如圖所示空間直角坐標(biāo)系,

設(shè)AB=1,則AE=1,,

,

設(shè)平面BDF的一個(gè)法向量為,

可得,

取平面ABD的一個(gè)法向量為,

,

故二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門(mén)的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的人(男、女各人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步量

性別

0~2000

2001~5000

5001~8000

8001~10000

>10000

1

2

3

6

8

0

2

10

6

2

(1)已知某人一天的走路步數(shù)超過(guò)步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有以上的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

附:,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這位好友該日走路步數(shù)的頻率分布來(lái)估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選人,其中每日走路不超過(guò)步的有人,超過(guò)步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面類(lèi)比推理:

①“若2a<2b,則a<b”類(lèi)比推出“若a2<b2,則a<b”;

②“(a+b)c=ac+bc(c≠0)”類(lèi)比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,則a=b”類(lèi)比推出“a,b∈C,若a-b=0,則a=b”;

④“a,b∈R,若a-b>0,則a>b”類(lèi)比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.

其中結(jié)論正確的個(gè)數(shù)為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以“你我中國(guó)夢(mèng),全民建小康”為主題“社會(huì)主義核心價(jià)值觀”為主線,為了解、兩個(gè)地區(qū)的觀眾對(duì)2018年韓國(guó)平昌冬奧會(huì)準(zhǔn)備工作的滿意程度,對(duì)、地區(qū)的名觀眾進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下:

非常滿意

滿意

合計(jì)

合計(jì)

在被調(diào)查的全體觀眾中隨機(jī)抽取名“非常滿意”的人是地區(qū)的概率為,且.

(1)現(xiàn)從名觀眾中用分層抽樣的方法抽取名進(jìn)行問(wèn)卷調(diào)查,則應(yīng)抽取“滿意”的、地區(qū)的人數(shù)各是多少?

(2)在(1)抽取的“滿意”的觀眾中,隨機(jī)選出人進(jìn)行座談,求至少有兩名是地區(qū)觀眾的概率?

(3)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系?

附:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動(dòng)。在1859年的時(shí)候,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計(jì)1000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為_(kāi)________(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))

A. 768 B. 144 C. 767 D. 145

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)在橢圓上.若點(diǎn),,且.

(1)求橢圓的離心率;

(2)設(shè)橢圓的焦距為4,,是橢圓上不同的兩點(diǎn),線段的垂直平分線為直線,且直線不與軸重合.

①若點(diǎn),直線過(guò)點(diǎn),求直線的方程;

② 若直線過(guò)點(diǎn),且與軸的交點(diǎn)為,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車(chē)的車(chē)流量y(千輛/小時(shí))與汽車(chē)的平均速度v(千米/小時(shí))之間的函數(shù)關(guān)系為:.

1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度為多少時(shí),車(chē)流量最大?最大車(chē)流量為多少?(保留分?jǐn)?shù)形式)

2)若要求在該時(shí)段內(nèi)車(chē)流量超過(guò)10千輛/小時(shí),則汽車(chē)的平均速度應(yīng)在什么范用內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值

(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)為某沿海城市的高速公路出入口,直線為海岸線,,,是以為圓心半徑為的圓弧型小路.該市擬修建一條從通往海岸的觀光專(zhuān)線其中上異于的一點(diǎn)平行設(shè).

(1)證明:觀光專(zhuān)線的總長(zhǎng)度隨的增大而減小;

(2)已知新建道路的單位成本是翻新道路的單位成本的2倍.當(dāng)取何值時(shí)觀光專(zhuān)線的修建總成本最低?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案