【題目】進(jìn)入冬季以來,我國北方地區(qū)的霧霾天氣持續(xù)出現(xiàn),極大的影響了人們的健康和出行,我市環(huán)保局對該市2015年進(jìn)行為期一年的空氣質(zhì)量監(jiān)測,得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個作為樣本進(jìn)行分析報告,樣本數(shù)據(jù)分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.
(1)求a的值;
(2)如果空氣質(zhì)量指數(shù)不超過15,就認(rèn)定空氣質(zhì)量為“特優(yōu)等級”,則從今年的監(jiān)測數(shù)據(jù)中隨機(jī)抽取3天的數(shù)值,其中達(dá)到“特優(yōu)等級”的天數(shù)為X.求X的分布列和數(shù)學(xué)期望.
【答案】
(1)解:由頻率分布直方圖中小矩形面積之和為1,
得:(0.02+0.032+a+0.018)×10=1,
解得a=0.03.
(2)解:利用樣本估計(jì)總體,該年度空所質(zhì)量指數(shù)在(5,15]內(nèi)為“特優(yōu)等級”,
且指數(shù)達(dá)到“特優(yōu)等級”的概率為0.2,
則X的取值為0,1,2,3,且X~B(3, ),
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= ,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
∴EX=0× +1× +2× +3× =
【解析】(1)由頻率分布直方圖中小矩形面積之和為1,由此能求出a.(2)由已知得X的取值為0,1,2,3,且X~B(3, ),由此能求出X的分布列和EX.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解頻率分布直方圖(頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息),還要掌握離散型隨機(jī)變量及其分布列(在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“牟合方蓋”是我國古代數(shù)學(xué)家劉徽在研究球的體積的過程中構(gòu)造的一個和諧優(yōu)美的幾何體.它由完全相同的四個曲面構(gòu)成,相對的兩個曲面在同一個圓柱的側(cè)面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).其直觀圖如圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其主視圖和側(cè)視圖完全相同時,它的俯視圖可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓的圓心是直線與軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線過點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于簡單幾何體的說法中正確的是( )
①有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱;
②有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;
③在斜二測畫法中,與坐標(biāo)軸不平行的線段的長度在直觀圖中有可能保持不變;
④有兩個底面平行且相似其余各面都是梯形的多面體是棱臺;
⑤空間中到定點(diǎn)的距離等于定長的所有點(diǎn)的集合是球面.
A. ③④⑤ B. ③⑤ C. ④⑤ D. ①②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, = == 分別在上, ,現(xiàn)將四邊形沿折起,使.
(1)若,在折疊后的線段上是否存在一點(diǎn),使得平面?若存在,求出的值;若不存在,說明理由;
(2)求三棱錐的體積的最大值,并求出此時點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.
()求圓的方程.
()設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.
()在()的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com