【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是,向量,且.
(1)求角B的值;
(2)若,且,求△ABC的面積.
【答案】(1);(2)△ABC的面積為。
【解析】
(1)由向量數(shù)量積的坐標(biāo)運(yùn)算可將m·n=bcos B化為cos C+cos A=bcos B,然后用正弦定理的結(jié)論邊化角可得 sin Acos C+sin Ccos A=2sin Bcos B,進(jìn)而再用兩角和正弦公式和誘導(dǎo)公式可求cos B=,進(jìn)而可求角B。(2)由(1)知B=,可將cos=sin A中的角C化為A,可得cos=sin A。利用兩角差的余弦公式可得tan A=,求得A=,進(jìn)而求得C=.由|m|=可得即a2+c2=20,在直角三角形中,可得a=c,進(jìn)而可求a,c的值?汕蠼Y(jié)論。
(1) 由m·n=bcos B,得cos C+cos A=bcos B,
sin Acos C+sin Ccos A=2sin Bcos B,
即 sin(A+C)=2sin Bcos B,sin B=2sin Bcos B,
∵0<B<π,sin B≠0,
∴cos B=,
∴B=.
(2) C=π-A-B=-A,cos=sin A
∴cos=sin A
∴cos A=sin Atan A=
∵ 0<A<π,
∴A=,
∴C=π--=.
在Rt△ABC中,a=csin=c,
又|m|=,即a2+c2=20,
∴a=2,c=4,b==2,
△ABC的面積S=×2×2=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校高三畢業(yè)生報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將他們的體重?cái)?shù)據(jù)整理后得到如下頻率分布直方圖,已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù);
(Ⅱ)已知A, 是該校報(bào)考體育專業(yè)的兩名學(xué)生,A的體重小于55千克, 的體重不小于70千克,現(xiàn)從該校報(bào)考體育專業(yè)的學(xué)生中按分層抽樣分別抽取體重小于55千克和不小于70千克的學(xué)生共6名,然后再從這6人中抽取體重小于55千克學(xué)生1人,體重不小于70千克的學(xué)生2人組成3人訓(xùn)練組,求A不在訓(xùn)練組且在訓(xùn)練組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)是直線上一動(dòng)點(diǎn),過點(diǎn)作圓的切線
(1)當(dāng)的橫坐標(biāo)為2時(shí),求切線方程;
(2)求證:經(jīng)過三點(diǎn)的圓必過定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)當(dāng)線段長度最小時(shí),求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,平面,,點(diǎn)分別為和中點(diǎn).
(1)求證:直線平面;
(2)求證:面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
B. 向左平移至個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
C. 向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
D. 向左平移個(gè)長度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a1 , a3 , a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an≠a1時(shí),數(shù)列{bn}滿足bn=2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi)。為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖。
(1)求直方圖中的值;
(2)設(shè)該市有60萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使82%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入冬季以來,我國北方地區(qū)的霧霾天氣持續(xù)出現(xiàn),極大的影響了人們的健康和出行,我市環(huán)保局對(duì)該市2015年進(jìn)行為期一年的空氣質(zhì)量監(jiān)測,得到每天的空氣質(zhì)量指數(shù),從中隨機(jī)抽取50個(gè)作為樣本進(jìn)行分析報(bào)告,樣本數(shù)據(jù)分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的空氣質(zhì)量指數(shù)頻率分布直方圖,如圖.
(1)求a的值;
(2)如果空氣質(zhì)量指數(shù)不超過15,就認(rèn)定空氣質(zhì)量為“特優(yōu)等級(jí)”,則從今年的監(jiān)測數(shù)據(jù)中隨機(jī)抽取3天的數(shù)值,其中達(dá)到“特優(yōu)等級(jí)”的天數(shù)為X.求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com