【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)是增函數(shù).

(1)若命題為真命題,求的取值范圍;

(2)若滿足為假命題為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.

【答案】(1)[4,+∞) (2)[-3,2]

【解析】

1)根據(jù)題干條件得到命題p下的m的范圍,和命題qm的范圍,兩者取交集即可;(2)由(1)可知,m的取值范圍是(3,4)即A={m|3<m<4},根據(jù)集合間的包含關(guān)系得到不等式組,解出即可.

(1)由p為真命題知, =16-4m≤0解得m≥4,所以m的范圍是[4,+∞),

由q為真命題知,2m-5>1,m>3,取交集得到[4,+∞).

綜上, m的范圍是[4,+∞)。

(2)由(1)可知,當(dāng)p為假命題時,m<4; q為真命題,則2m-5>1解得:m>3

則,m的取值范圍是(3,4)即A={m|3<m<4},

而AB,可得,

解得:-3≤t≤2.

所以,t的取值范圍是[-3,2]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCDA1B1C1D1棱長為4,點(diǎn)在棱上,點(diǎn)在棱上,且.在側(cè)面內(nèi)以為一個頂點(diǎn)作邊長為1的正方形,側(cè)面內(nèi)動點(diǎn)滿足到平面距離等于線段長的倍,則當(dāng)點(diǎn)運(yùn)動時,三棱錐的體積的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在區(qū)間上的兩個函數(shù),如果對任意的,均有不等式成立,則稱函數(shù)上是友好的,否則稱為不友好的.

1)若,則在區(qū)間上是否友好;

2)現(xiàn)在有兩個函數(shù),給定區(qū)間

①若在區(qū)間上都有意義,求的取值范圍;

②討論函數(shù)與在區(qū)間上是否友好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:,直線過定點(diǎn).

(1)若與圓相切,求的方程;

(2)若與圓相交于兩點(diǎn),線段的中點(diǎn)為,又的交點(diǎn)為,判斷是否為定值.若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個交點(diǎn)為, 的周長為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角的對邊分別為,已知.

(1)求角;

(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,的中點(diǎn).

)求證:

)求證:平面平面

)在平面內(nèi)是否存在,使得直線平面,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下說法:

一年按365天計算,兩名學(xué)生的生日相同的概率是;買彩票中獎的概率為0.001,那么買1 000張彩票就一定能中獎;乒乓球賽前,決定誰先發(fā)球,抽簽方法是從1~1010個數(shù)字中各抽取1,再比較大小,這種抽簽方法是公平的;昨天沒有下雨,則說明昨天氣象局的天氣預(yù)報降水概率是90%”是錯誤的.

根據(jù)我們所學(xué)的概率知識,其中說法正確的序號是___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個對稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號是_____

查看答案和解析>>

同步練習(xí)冊答案