【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

【答案】

【解析】試題分析:()連接BDACO點(diǎn),連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;()延長AEM連結(jié)DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積

試題解析:(1)證明:連接BDAC于點(diǎn)O,連接EO.

因?yàn)?/span>ABCD為矩形,所以OBD的中點(diǎn).

EPD的中點(diǎn),所以EO∥PB.

因?yàn)?/span>EO平面AEC,PB平面AEC,

所以PB∥平面AEC.

(2)因?yàn)?/span>PA⊥平面ABCD,ABCD為矩形,

所以AB,AD,AP兩兩垂直.

如圖,以A為坐標(biāo)原點(diǎn), AD,AP的方向?yàn)?/span>xyz軸的正方向,||為單位長,建立空間直角坐標(biāo)系Axyz,則D,E, .

設(shè)B(m,00)(m>0),則C(m, ,0)(m, ,0)

設(shè)n1(x,yz)為平面ACE的法向量,

可取n1.

n2(10,0)為平面DAE的法向量,

由題設(shè)易知|cosn1,n2|,即

,解得m.

因?yàn)?/span>EPD的中點(diǎn),所以三棱錐EACD的高為.三棱錐EACD的體積V××××.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3ax-1,a≠0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.

(1)補(bǔ)全頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);

(3)用分層抽樣的方法在身高為內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓()的離心率是,過點(diǎn)(,)的動(dòng)直線與橢圓相交于,兩點(diǎn),當(dāng)直線平行于軸時(shí),直線被橢圓截得的線段長為

求橢圓的方程:

已知為橢圓的左端點(diǎn),: 是否存在直線使得的面積為?若不存在,說明理由,若存在,求出直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線 ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線 .

(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線,求的參數(shù)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的普通方程與直線的直角坐標(biāo)方程;

(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)的直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A{x|(x3)(xa)<0,a∈R},集合B{xZ|x23x4<0}

(1)AB的子集個(gè)數(shù)為4,求a的范圍;

(2)aZ,當(dāng)AB時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1)寫出的解析式與定義域;

2)畫出函數(shù)的圖像;

3)試討論方程的根的個(gè)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案