【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個(gè)數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)A∪B.
【答案】(1) -1<a≤0 (2) a的最小值為-1. A∪B={0}∪{x|1≤x≤3}.
【解析】試題分析: (1)先求集合B,根據(jù)A∩B的子集個(gè)數(shù)為4得A∩B有兩個(gè)元素,結(jié)合數(shù)軸可得A∩B={1,2},因此-1<a≤0(2)結(jié)合數(shù)軸可得a>-2,再根據(jù)a∈Z,得a的最小值為-1.再根據(jù)數(shù)軸求集合并集
試題解析:解:(1)因?yàn)?/span>B={x∈Z|x2-3x-4<0}={x∈Z|-1<x<4}={0,1,2,3}.
若-a>3,即a<-3時(shí),A={x|3<x<-a}.
此時(shí),A∩B=,則A∩B子集的個(gè)數(shù)為1,不合題意.
若-a=3,即a=-3時(shí),A=,A∩B=,則A∩B子集的個(gè)數(shù)為1,不合題意.
若-a<3,即a>-3,此時(shí)A={x|-a<x<3}.
由A∩B的子集個(gè)數(shù)為4知,A∩B中有2個(gè)元素.所以0≤-a<1,即-1<a≤0,此時(shí),A∩B={1,2},有4個(gè)子集,符合題意.
(2)由(1)知,B={0,1,2,3},且當(dāng)a≤-3時(shí),A∩B=.
故a>-3,此時(shí)A={x|-a<x<3}.
要使A∩B≠,則-a<2.
即a>-2,又a∈Z,所以a的最小值為-1.
當(dāng)a=-1時(shí),A={x|1<x<3}.
所以A∪B={x|1<x<3}∪{0,1,2,3}={0}∪{x|1≤x≤3}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)
(1)求函數(shù)g(x)的極大值;
(2)求證:1+++…+>ln(n+1)(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,,與相交于點(diǎn),平面,.
(1)求證:平面;
(2)當(dāng)直線與平面所成角的大小為時(shí),求的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題13分)已知函數(shù)f(x)=- (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).若的一個(gè)零點(diǎn)附近的函數(shù)值如下所示,請(qǐng)用二分法求出方程的一個(gè)正實(shí)數(shù)解的近似值(精確度0.1).,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價(jià)格(元)與時(shí)間(天)組成有序數(shù)對(duì),點(diǎn)落在圖中的兩條線段上.
該股票在30天內(nèi)的日交易量(萬股)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如下表所示:
第天 | 4 | 10 | 16 | 22 |
(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該股票每股交易價(jià)格(元)與時(shí)間(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù),寫出日交易量(萬股)與時(shí)間(天)的一次函數(shù)關(guān)系式;
(3)用(萬元)表示該股票日交易額,寫出關(guān)于的函數(shù)關(guān)系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*.已知a1=1,a2=,a3=,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明:為等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像經(jīng)過坐標(biāo)原點(diǎn),其到函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上.
(I)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),是數(shù)列的前n項(xiàng)和,求使得<對(duì)所有都成立的最小正整數(shù)m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com