【題目】已知函數(shù),其導函數(shù)為.

1)討論函數(shù)的單調(diào)性;

2)若,關(guān)于的不等式恒成立,求實數(shù)的取值范圍;

3)若函數(shù)有兩個零點,,求證:.

【答案】1)見解析;(2;(3)證明見解析

【解析】

1)求導得到,討論兩種情況,得到答案.

2,設(shè),求導得到單調(diào)性得到,得到答案.

3)要證,即,構(gòu)造函數(shù),證明函數(shù)單調(diào)遞減,得到,根據(jù)單調(diào)性得到答案.

1,,

時,恒成立,函數(shù)單調(diào)遞增;

時,,,故上單調(diào)遞減,在上單調(diào)遞增.

綜上所述:時,函數(shù)在R上單調(diào)遞增,時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.

2,即,設(shè)

設(shè),則上恒成立,故單調(diào)遞增,

,故上單調(diào)遞減,在上單調(diào)遞增,

,故.

3,故,相加得到.

要證,即證,即.

,即,設(shè),則,

函數(shù)上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,

函數(shù)圖像如圖所示:故取,

構(gòu)造函數(shù),,

,函數(shù)在上單調(diào)遞減,故,

時,,函數(shù)單調(diào)遞減,,故.

,即,,函數(shù)單調(diào)遞增,

,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解學生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學生稱為“手機迷”.

I)將頻率視為概率,估計哪個年級的學生是“手機迷”的概率大?請說明理由.

II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關(guān)?

非手機迷

手機迷

合計

合計

附:隨機變量(其中為樣本總量).

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

span>2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)在區(qū)間為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)的取值范圍;

(2)若在為自然對數(shù)的底數(shù))上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自新型冠狀病毒疫情爆發(fā)以來,人們時刻關(guān)注疫情,特別是治愈率,治愈率累計治愈人數(shù)/累計確診人數(shù),治愈率的高低是戰(zhàn)役的重要數(shù)據(jù),由于確診和治愈人數(shù)在不斷變化,那么人們就非常關(guān)心第天的治愈率,以此與之前的治愈率比較,來推斷在這次戰(zhàn)役中是否有了更加有效的手段,下面是一段計算治愈率的程序框圖,請同學們選出正確的選項,分別填入①②兩處,完成程序框圖.

:第天新增確診人數(shù);:第天新增治愈人數(shù);:第天治愈率

A.,B.,

C.,D.,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面,已知,,點是棱的中點.

1)求證:平面;

2)求二面角的余弦值;

3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到直線的距離比到點的距離大

1)求動點的軌跡的方程;

2上兩點,為坐標原點,,過分別作的兩條切線,相交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小姜同學有兩個盒子,最初盒子6枚硬幣,盒子是空的.在每一回合中,她可以將一枚硬幣從盒移到盒,或者從盒移走枚硬幣,其中盒中當前的硬幣數(shù).盒空時她獲勝.則小姜可以獲勝的最少回合是( )

A.三回合B.四回合C.五回合D.六回合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方形AMDE的邊長為2,B,C分別為AM,MD的中點在五棱錐PABCDE,F為棱PE的中點,平面ABF與棱PD,PC分別交于點G,H.

(1)求證ABFG;

(2)PA⊥底面ABCDE,PAAE.求直線BC與平面ABF所成角的大小,并求線段PH的長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的直角坐標方程,并求時直線的普通方程;

2)直線和曲線交于、兩點,點的直角坐標為,求的最大值.

查看答案和解析>>

同步練習冊答案