【題目】已知?jiǎng)狱c(diǎn)到直線(xiàn)的距離比到點(diǎn)的距離大

1)求動(dòng)點(diǎn)的軌跡的方程;

2上兩點(diǎn),為坐標(biāo)原點(diǎn),,過(guò)分別作的兩條切線(xiàn),相交于點(diǎn),求面積的最小值.

【答案】1)軌跡為拋物線(xiàn),其方程為.(2

【解析】

1)設(shè)點(diǎn)的坐標(biāo)為,根據(jù)條件列出方程,然后化簡(jiǎn)即可;

2)設(shè)直線(xiàn)的方程為,,聯(lián)立直線(xiàn)與拋物線(xiàn)的方程得出,然后用表示出和點(diǎn)到直線(xiàn)的距離,然后可得到,即可求出其最小值.

1)設(shè)點(diǎn)的坐標(biāo)為

因?yàn)閯?dòng)點(diǎn)到定直線(xiàn)的距離比到點(diǎn)的距離大

所以,且,化簡(jiǎn)得

所以軌跡為拋物線(xiàn),其方程為

2)依題意,設(shè)直線(xiàn)的方程為

,得

因?yàn)橹本(xiàn)與拋物線(xiàn)交于兩點(diǎn)

所以

設(shè),

又因?yàn)?/span>

所以

所以

所以

所以

所以

過(guò)點(diǎn)的切線(xiàn)方程為,即

過(guò)點(diǎn)的切線(xiàn)方程為,即

由①②得,

所以過(guò)的兩條拋物線(xiàn)的切線(xiàn)相交于點(diǎn)

所以點(diǎn)到直線(xiàn)的距離

當(dāng)時(shí),的面積最小,最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015812日天津發(fā)生;分卮蟊ㄊ鹿,造成重大人員和經(jīng)濟(jì)損失.某港口組織消防人員對(duì)該港口的公司的集裝箱進(jìn)行安全抽檢,已知消防安全等級(jí)共分為四個(gè)等級(jí)(一級(jí)為優(yōu),二級(jí)為良,三級(jí)為中等,四級(jí)為差),該港口消防安全等級(jí)的統(tǒng)計(jì)結(jié)果如下表所示:

現(xiàn)從該港口隨機(jī)抽取了家公司,其中消防安全等級(jí)為三級(jí)的恰有20家.

)求的值;

)按消防安全等級(jí)利用分層抽樣的方法從這家公司中抽取10家,除去消防安全等級(jí)為一級(jí)和四級(jí)的公司后,再?gòu)氖S喙局腥我獬槿?/span>2家,求抽取的這2家公司的消防安全等級(jí)都是二級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】科赫曲線(xiàn)是一種外形像雪花的幾何曲線(xiàn),一段科赫曲線(xiàn)可以通過(guò)下列操作步驟構(gòu)造得到,任畫(huà)一條線(xiàn)段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來(lái)的一條線(xiàn)段就變成了4條小線(xiàn)段構(gòu)成的折線(xiàn),稱(chēng)為“一次構(gòu)造”;用同樣的方法把每條小線(xiàn)段重復(fù)上述步驟,得到16條更小的線(xiàn)段構(gòu)成的折線(xiàn),稱(chēng)為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線(xiàn).若要在構(gòu)造過(guò)程中使得到的折線(xiàn)的長(zhǎng)度達(dá)到初始線(xiàn)段的1000倍,則至少需要通過(guò)構(gòu)造的次數(shù)是( .(取,

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓的參數(shù)方程是為參數(shù)).為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程是,射線(xiàn)與圓的交點(diǎn)為兩點(diǎn),與直線(xiàn)的交點(diǎn)為.

1)求圓的極坐標(biāo)方程;

2)求線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其導(dǎo)函數(shù)為.

1)討論函數(shù)的單調(diào)性;

2)若,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

3)若函數(shù)有兩個(gè)零點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,的中點(diǎn).

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長(zhǎng);

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是民航部門(mén)統(tǒng)計(jì)的某年春節(jié)期間:中國(guó)民航出入境航線(xiàn)方面TOP10出入境國(guó)家和地區(qū)的旅客量以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表,根據(jù)圖表,下面敘述不正確的是(

A.東南亞仍是人們出境旅游的首選

B.臺(tái)灣和澳門(mén)均有超過(guò)一成的同比增長(zhǎng)

C.越南和美國(guó)排在人們出境旅游選擇的前兩位

D.-韓航線(xiàn)雖依然位列出入境國(guó)家和地區(qū)第三甲,但旅客量卻較去年出現(xiàn)負(fù)增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】植物園擬建一個(gè)多邊形苗圃,苗圃的一邊緊靠著長(zhǎng)度大于30m的圍墻.現(xiàn)有兩種方案:

方案多邊形為直角三角形),如圖1所示,其中;

方案多邊形為等腰梯形),如圖2所示,其中

請(qǐng)你分別求出兩種方案中苗圃的最大面積,并從中確定使苗圃面積最大的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,的前n項(xiàng)和為.若對(duì)任意的恒成立.

1)求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿(mǎn)足問(wèn):是否存在正整數(shù),使得,若存在求出的值,若不存在,說(shuō)明理由;

3)若存在各項(xiàng)均為正整數(shù)公差為的無(wú)窮等差數(shù)列,滿(mǎn)足,且存在正整數(shù),使得成等比數(shù)列,求的所有可能的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案