【題目】已知函數(shù)上有最大值和最小值,設(shè)為自然對數(shù)的底數(shù)).

(1)求的值;

(2)若不等式上有解,求實(shí)數(shù)的取值范圍;

(3)若方程有三個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3).

【解析】

試題(1)配方可得,當(dāng)時,由函數(shù)的單調(diào)性可得的方程組,解方程組可得,當(dāng)時,,無最大值和最小值,不合題意,故;(2)由(1)得,問題等價于上有解,求二次函數(shù)區(qū)間的最值可得;(3)原方程可化為,令,則,由題意知有兩個不同的實(shí)數(shù)解,且其中,解不等式可得.

試題解析:(1),當(dāng)時,上是增函數(shù),∴解得;當(dāng)時,,無最大值和最小值;當(dāng)時,上是減函數(shù),∴解得,∴舍去,綜上,的值分別為.

(2)由(1)知,∴上有解等價于上有解,即上有解,令,則,∵,∴,記,∵,∴,∴的取值范圍為

(3)原方程可化為,令,則,由題意知有兩個不同的實(shí)數(shù)解,且其中,記,則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2-ax)ex(x∈R),a為實(shí)數(shù).

(1)當(dāng)a=0時,求函數(shù)f(x)的單調(diào)增區(qū)間;

(2)若f(x)在閉區(qū)間[-1,1]上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,12月1日至12月5日的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù)如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2組數(shù)據(jù)的概率.

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程.

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為且過點(diǎn)橢圓C軸的交點(diǎn)為AB(點(diǎn)A位于點(diǎn)B的上方),直線與橢圓C交于不同的兩點(diǎn)M、N(點(diǎn)M位于點(diǎn)N的上方).

(1)求橢圓C的方程;

(2)求△OMN面積的最大值;

(3)求證:直線AN和直線BM交點(diǎn)的縱坐標(biāo)為常值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為鍛煉達(dá)人”.

1)將頻率視為概率,估計我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項(xiàng)體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為;

②若,則函數(shù)的最小值為

③若,滿足,則的最小值為

④函數(shù)的最小值為

正確的有__________.(把你認(rèn)為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是由曲線確定的.

1)寫出函數(shù),并判斷該函數(shù)的奇偶性;

2)求函數(shù)的單調(diào)區(qū)間并證明其單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)若函數(shù)fx)在處有極值,求函數(shù)fx)的最大值;

2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,算得,,

1)求家庭的月儲蓄對月收入的線性回歸方程;

2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

(附:線性回歸方程中,,其中為樣本平均值.

查看答案和解析>>

同步練習(xí)冊答案