鐵礦石的含鐵率,冶煉每萬(wàn)噸鐵礦石的的排放量及每萬(wàn)噸鐵礦石的價(jià)格如下表:
 

(萬(wàn)噸)
(百萬(wàn)元)

50%
1
3

70%
0.5
6
某冶煉廠至少要生產(chǎn)1.9(萬(wàn)噸)鐵,若要求的排放量不超過(guò)(萬(wàn)噸),則購(gòu)買(mǎi)鐵礦石的最少費(fèi)用為 (百萬(wàn)元).
15

試題分析:由已知條件中,鐵礦石A和B的含鐵率a,冶煉每萬(wàn)噸鐵礦石的CO2排放量b及每萬(wàn)噸鐵礦石的價(jià)格c,再根據(jù)生產(chǎn)量不少于 1.9(萬(wàn)噸)鐵,及CO2的排放量不超過(guò)2(萬(wàn)噸)構(gòu)造出約束條件,并畫(huà)出可行域,利用角點(diǎn)法求出購(gòu)買(mǎi)鐵礦石的最少費(fèi)用.設(shè)購(gòu)買(mǎi)鐵礦石A和B各x,y萬(wàn)噸,則購(gòu)買(mǎi)鐵礦石的費(fèi)用z=3x+6y,x,y滿足約束條件0.5x+0.7y≥1.9,x+0.5y≤2,x≥0,y≥0
表示平面區(qū)域如圖所示
由0.5x+0.7y=1.9和x+0.5y≤2,可得B(1,2)
則當(dāng)直線z=3x+6y過(guò)點(diǎn)B(1,2)時(shí),
購(gòu)買(mǎi)鐵礦石的最少費(fèi)用z=15
故填寫(xiě)15.
點(diǎn)評(píng):解決線性規(guī)劃的應(yīng)用題時(shí),其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件②由約束條件畫(huà)出可行域③利用角點(diǎn)法求出目標(biāo)函數(shù)的最值④還原到現(xiàn)實(shí)問(wèn)題中
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實(shí)數(shù)m、n使得h (x) =" m" f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的函數(shù).設(shè) ,,若h (x)為f (x)、g(x)在R上生成的一個(gè)偶函數(shù),且,則函數(shù)h (x)="__________."

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)
在區(qū)間上是減函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若上恒成立,求實(shí)數(shù)的最大值;
(Ⅲ)若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)。
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,試確定實(shí)數(shù)k的取值范圍;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),
(1)求的解析式
(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知定義在上的函數(shù)為常數(shù),若為偶函數(shù),
(1)求的值;
(2)判斷函數(shù)內(nèi)的單調(diào)性,并用單調(diào)性定義給予證明;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

不等式選講已知函數(shù)。
⑴當(dāng)時(shí),求函數(shù)的最小值;
⑵當(dāng)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004141490303.png" style="vertical-align:middle;" />時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
圖1是某種稱為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長(zhǎng)為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.

(1)寫(xiě)出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;
(2)求當(dāng)x取何值時(shí),凹槽的強(qiáng)度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)已知函數(shù)(為常數(shù))是實(shí)數(shù)集上的奇函數(shù),函數(shù)是區(qū)間上的減函數(shù)。
(1)求上的最大值;
(2)若對(duì)恒成立,求的取值范圍;
(3)討論關(guān)于的方程的根的個(gè)數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案