(本小題滿分14分)
已知函數(shù)為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)
在區(qū)間上是減函數(shù).
(Ⅰ)求實數(shù)的值;
(Ⅱ)若上恒成立,求實數(shù)的最大值;
(Ⅲ)若關(guān)于的方程有且只有一個實數(shù)根,求的值.
(Ⅰ);(Ⅱ) ;(Ⅲ)

試題分析:(Ⅰ)是實數(shù)集上奇函數(shù),
,即   ……2分.
帶入,顯然為奇函數(shù).         ……3分
(Ⅱ)由(Ⅰ)知
要使是區(qū)間上的減函數(shù),則有恒成立,,所以.           ……5分
要使上恒成立,
只需時恒成立即可.
(其中)恒成立即可. ………7分
,則
,所以實數(shù)的最大值為              ………9分
(Ⅲ)由(Ⅰ)知方程,即,


當(dāng)時,上為增函數(shù);
當(dāng)時,上為減函數(shù);
當(dāng)時,.     ………………11分

當(dāng)是減函數(shù),當(dāng)時,是增函數(shù),
當(dāng)時,. ………………12分
只有當(dāng),即時,方程有且只有一個實數(shù)根. …………14分
點評:近幾年新課標(biāo)高考對于函數(shù)與導(dǎo)數(shù)這一綜合問題的命制,一般以有理函數(shù)與半超越(指數(shù)、對數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時要注意對數(shù)式對函數(shù)定義域的隱蔽,這類問題重點考查函數(shù)單調(diào)性、導(dǎo)數(shù)運算、不等式方程的求解等基本知識,注重數(shù)學(xué)思想(分類與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運用.把數(shù)學(xué)運算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)設(shè)函數(shù)對任意,有,且當(dāng)時,;求函數(shù)上的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分14分) 定義在上的函數(shù)同時滿足以下條件:
上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設(shè),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設(shè)計其斷面面積為平方米,為了使堤的上面與兩側(cè)面的水泥用料最省,則斷面的外周長(梯形的上底線段與兩腰長的和)要最小.

(1)求外周長的最小值,并求外周長最小時防洪堤高h為多少米?
(2)如防洪堤的高限制在的范圍內(nèi),外周長最小為多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)是實數(shù),,
(1)若函數(shù)為奇函數(shù),求的值;
(2)試用定義證明:對于任意,上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式對任意 恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,若,則=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)函數(shù)(>0)取最小值時相應(yīng)的的值等于     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若定義在R上的偶函數(shù)滿足,且當(dāng)時,則方程的解個數(shù)是                   (   )
A.0個B.2個C.4個D.6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

鐵礦石的含鐵率,冶煉每萬噸鐵礦石的的排放量及每萬噸鐵礦石的價格如下表:
 

(萬噸)
(百萬元)

50%
1
3

70%
0.5
6
某冶煉廠至少要生產(chǎn)1.9(萬噸)鐵,若要求的排放量不超過(萬噸),則購買鐵礦石的最少費用為 (百萬元).

查看答案和解析>>

同步練習(xí)冊答案