【題目】在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1 , y1),P2(x2 , y2)間的“L﹣距離”定義為|P1P2|=|x1﹣x2|+|y1﹣y2|.現(xiàn)將邊長(zhǎng)為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤ .求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.

【答案】解:設(shè)邊AB所在直線的傾斜角為θ,則

∴|BC|=|cosθ﹣cos(θ+ )|+|sinθ﹣sin(θ+ )|
=
=

∴|BC|= = sin(θ+
,
∴當(dāng)θ+ = 時(shí),即θ= 時(shí),|BC|取得最大值 ,
此時(shí) ,∵ (或由 求k)∴ ,

【解析】設(shè)邊AB所在直線的傾斜角為θ,則 ,利用L﹣距離的定義,表示|BC|,結(jié)合輔助角公式,求出取最大值時(shí),邊AB所在直線的斜率的值.
【考點(diǎn)精析】本題主要考查了直線的斜率的相關(guān)知識(shí)點(diǎn),需要掌握一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=2x2+bx+c在 上是減函數(shù),在 上是增函數(shù),且兩個(gè)零點(diǎn)x1 , x2滿足|x1﹣x2|=2,求二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), , 為自然對(duì)數(shù)的底數(shù)).

(1)試討論函數(shù)的極值情況;

(2)證明:當(dāng)時(shí),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x+ 有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在 上是減函數(shù),在 上是增函數(shù).
(1)已知f(x)= ,x∈[﹣1,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=﹣x﹣2a,若對(duì)任意x1∈[﹣1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面;

(2)若,點(diǎn)在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)設(shè)定義在D上的函數(shù)y=g(x)在點(diǎn)P(x0 , y0)處的切線方程為l:y=h(x).當(dāng)x≠x0時(shí),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=g(x)的“轉(zhuǎn)點(diǎn)”.當(dāng)a=8時(shí),問函數(shù)y=f(x)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=m2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,點(diǎn)D是BC的中點(diǎn).

(1)求證:A1B∥平面ADC1;
(2)求平面ADC1與ABA1所成二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x)滿足f(x+π)=f(x),當(dāng)[0, )時(shí),f(x)=tanx,則f( )=

查看答案和解析>>

同步練習(xí)冊(cè)答案