【題目】已知函數(shù)y=x+ 有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在 上是減函數(shù),在 上是增函數(shù).
(1)已知f(x)= ,x∈[﹣1,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=﹣x﹣2a,若對(duì)任意x1∈[﹣1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

【答案】
(1)解:y= =x+2+ ﹣6;

設(shè)u=x+2,x∈[﹣1,1],1≤u≤3,u=x+2為增函數(shù);

則y=u+ ﹣6,u∈[1,3];

由已知性質(zhì)得,①當(dāng)1≤u≤2,即﹣1≤x≤0時(shí),f(x)單調(diào)遞減;

∴f(x)的減區(qū)間為[﹣1,0];

②當(dāng)2≤u≤3,即0≤x≤1時(shí),f(x)單調(diào)遞增;

∴f(x)的增區(qū)間為[0,1];

由f(﹣1)=﹣1,f(0)=﹣2,f(1)=

得f(x)的值域?yàn)閇﹣2,﹣1]


(2)解:g(x)=﹣x﹣2a為減函數(shù),x∈[0,1];

故g(x)∈[﹣1﹣2a,﹣2a];

由題意,f(x)的值域是g(x)的值域的子集;

;

即實(shí)數(shù)a的值為


【解析】(1)根據(jù)條件,先變形f(x)= ,可令x+2=u,1≤u≤3,而函數(shù)u=x+2為增函數(shù),從而根據(jù)復(fù)合函數(shù)的單調(diào)性及已知的性質(zhì)便可得出f(x)的減區(qū)間為[﹣1,0],增區(qū)間為[0,1],進(jìn)一步便可得出f(x)的值域?yàn)閇﹣2,﹣1];(2)根據(jù)題意便知f(x)的值域?yàn)間(x)的子集,而容易求出g(x)的值域?yàn)閇﹣1﹣2a,﹣2a],從而得出 ,這樣即可得出實(shí)數(shù)a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列不等式:
1+ ,1+
1+ + +

照此規(guī)律,第五個(gè)不等式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)2lnx(a為常數(shù)).
(1)若f(x)在(1,f(1))處的切線與直線2x+2y﹣3=0垂直.
(。┣髮(shí)數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x﹣1)的大小;
(2)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面;

(2)若,點(diǎn)在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),數(shù)列的前項(xiàng)和為,點(diǎn)圖象上,且的最小值為.

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù)).

(1)試討論函數(shù)的極值情況;

(2)證明:當(dāng)時(shí),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1 , y1),P2(x2 , y2)間的“L﹣距離”定義為|P1P2|=|x1﹣x2|+|y1﹣y2|.現(xiàn)將邊長為1的正三角形ABC按如圖所示的方式放置,其中頂點(diǎn)A與坐標(biāo)原點(diǎn)重合.記邊AB所在直線的斜率為k,0≤k≤ .求:當(dāng)|BC|取最大值時(shí),邊AB所在直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),是自然對(duì)數(shù)的底數(shù)).

(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知集合M={﹣1,1,2,4}N={0,1,2}給出下列四個(gè)對(duì)應(yīng)法則,其中能構(gòu)成從M到N的函數(shù)是(
A.y=x2
B.y=x+1
C.y=2x
D.y=log2|x|

查看答案和解析>>

同步練習(xí)冊(cè)答案