【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底, 是的中點。
(1)證明:直線平面;
(2)點在棱上,且直線與底面所成角為,求二面角的余弦值。
【答案】(1)見解析;(2)
【解析】試題分析:(1) 取的中點,連結(jié), ,由題意證得∥,利用線面平行的判斷定理即可證得結(jié)論;(2)建立空間直角坐標(biāo)系,求得半平面的法向量: , ,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值為.
試題解析:(1)取中點,連結(jié), .
因為為的中點,所以, ,由得,又
所以.四邊形為平行四邊形, .
又, ,故
(2)
由已知得,以A為坐標(biāo)原點, 的方向為x軸正方向, 為單位長,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則
則, , , ,
,則
因為BM與底面ABCD所成的角為45°,而是底面ABCD的法向量,所以
,
即(x-1)+y-z=0
又M在棱PC上,學(xué)|科網(wǎng)設(shè)
由①,②得
所以M,從而
設(shè)是平面ABM的法向量,則
所以可取m=(0,-,2).于是
因此二面角M-AB-D的余弦值為
點睛:(1)求解本題要注意兩點:①兩平面的法向量的夾角不一定是所求的二面角,②利用方程思想進(jìn)行向量運算,要認(rèn)真細(xì)心、準(zhǔn)確計算.
(2)設(shè)m,n分別為平面α,β的法向量,則二面角θ與<m,n>互補(bǔ)或相等,故有|cos θ|=|cos<m,n>|=.求解時一定要注意結(jié)合實際圖形判斷所求角是銳角還是鈍角.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點的直線:與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時,解不等式;
(3)若不等式的解集為,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓經(jīng)過坐標(biāo)原點和點,且與直線相切, 從圓外一點向該圓引切線,為切點,
(Ⅰ)求圓的方程;
(Ⅱ)已知點,且, 試判斷點是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線與軸的交點為,點是直線上兩動點,且以為直徑的圓過點,圓是否過定點?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點.
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知點A(2,0),B(2,0),動點M(x,y)滿足直線AM與BM的斜率之積為.記M的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線;
(2)過坐標(biāo)原點的直線交C于P,Q兩點,點P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長交C于點G.
(i)證明:是直角三角形;
(ii)求面積的最大值.
(二)選考題:共10分.請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為的等邊三角形內(nèi)任一點到三邊距離之和為定值,這個定值等于;將這個結(jié)論推廣到空間是:棱長為的正四面體內(nèi)任一點到各面距離之和等于________________.(具體數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
(1)“若,則,互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則無實數(shù)解”的否命題;
(4)命題:“空間中到一個正四面體的六條棱所在的直線距離均相等的點有且只有個”; 其中真命題( )
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(2)(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com