【題目】有下列四個命題:
(1)“若,則,互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則無實數(shù)解”的否命題;
(4)命題:“空間中到一個正四面體的六條棱所在的直線距離均相等的點(diǎn)有且只有個”; 其中真命題( )
A.(1)(2)B.(2)(3)C.(1)(2)(3)D.(1)(2)(4)
【答案】D
【解析】
根據(jù)逆命題、否命題的定義,逐項判斷即可求得答案.
對于(1),“若,則,互為倒數(shù)”的逆命題為“若,互為倒數(shù),則” ,為真命題;
對于(2),“面積相等的三角形全等”的否命題為“面積不相等的三角形不全等” ,為真命題;
對于(3),“若,則無實數(shù)解”的否命題為“若,則有實數(shù)解”,因為,可得,所以為假命題;
對于(4),如圖,
正四面體的內(nèi)切球球心到六條棱所在直線的距離相等,將正四面體延拓為三棱錐,所得三棱臺的內(nèi)切球(只可能與底面不相切)球心到正四面體的六條棱所在直線的距離相等,同理,對每個面進(jìn)行延拓均可得到一個滿足題意的點(diǎn),據(jù)此可知,滿足題意的點(diǎn)有且只有五個.故為真命題.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底, 是的中點(diǎn)。
(1)證明:直線平面;
(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線與在原點(diǎn)處的切線相同。
(1)求的值;
(2)求的單調(diào)區(qū)間和極值;
(3)若時,,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點(diǎn),與曲線交于點(diǎn),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐E-ABCD中,平面ABCD⊥平面AEB,且四邊形ABCD為矩形.∠BAE=90°,AE=4,AD=2,F,G,H分別為BE,AE,AD的中點(diǎn).
(Ⅰ)求證:CD∥平面FGH;
(Ⅱ)求證:平面FGH⊥平面ADE;
(Ⅲ)在線段DE求一點(diǎn)P,使得AP⊥FH,并求出AP的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰梯形ABCD中,,,E,F為AB的三等分點(diǎn),且將和分別沿DE、CF折起到A、B兩點(diǎn)重合,記為點(diǎn)P.
證明:平面平面PEF;
若,求PD與平面PFC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,則函數(shù)=在上的所有零點(diǎn)之和為
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時,周日測試
方式二:周六一天培訓(xùn)4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進(jìn)行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為.
(1)當(dāng)時,試確定曲線的形狀及其焦點(diǎn)坐標(biāo);
(2)若直線交曲線于點(diǎn)、,線段中點(diǎn)的橫坐標(biāo)為,試問此時曲線上是否存在不同的兩點(diǎn)、關(guān)于直線對稱?
(3)當(dāng)為大于1的常數(shù)時,設(shè)是曲線上的一點(diǎn),過點(diǎn)作一條斜率為的直線,又設(shè)為原點(diǎn)到直線的距離,分別為點(diǎn)與曲線兩焦點(diǎn)的距離,求證是一個定值,并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com