【題目】某企業(yè)從某種型號的產(chǎn)品中抽取了件對該產(chǎn)品的某項指標的數(shù)值進行檢測,將其整理成如圖所示的頻率分布直方圖,已知數(shù)值在100~110的產(chǎn)品有2l件.

(1)求的值;

(2)規(guī)定產(chǎn)品的級別如下表:

已知一件級產(chǎn)品的利潤分別為10,20,40元,以頻率估計概率,現(xiàn)質(zhì)檢部門從該批產(chǎn)品中隨機抽取兩件,兩件產(chǎn)品的利潤之和為,求的分布列和數(shù)學期望;

(3)為了了解該型號產(chǎn)品的銷售狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,并繪制了相應的折線圖,由折線圖可以看出,可用線性回歸模型擬合月度市場盧有率(%)與月份代碼之間的關系.求關于的線性回歸方程,并預測2017年4月份(即時)的市場占有率.

(參考公式:回歸直線方程為,其中,

【答案】(1) (2)見解析(3)2017年4月份的市場占有率預計為

【解析】試題分析:(1)第(1)問,根據(jù)頻率公式求N,利用頻率分布直方圖的矩形的面積和為1a. (2)第(2)問,先寫出X的值,再列出分布列和求X的數(shù)學期望. (3)第(3)問,先利用最小二乘法求關于的線性回歸方程,再預測2017年4月份(即時)的市場占有率.

試題解析:

(1)數(shù)值在100~110內(nèi)的頻率為,所以.

又因為,所以.

(2)由頻率分布直方圖,可知抽取的一件產(chǎn)品為, 等級的概率分別為, ,且的取值為20,30,40,50,60,80,則 , , ,

所以的分布列為

X

20

30

40

50

60

80

P

所以.

(3)由折線圖中所給的數(shù)據(jù)計算,

可得,

所以,

所以,

故月度市場占有率與月份序號之間的線性回歸方程為.

時, .

所以2017年4月份的市場占有率預計為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列有關線性回歸分析的四個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點();

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當相關性系數(shù)時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數(shù)就越接近于

其中真命題的個數(shù)為( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年出現(xiàn)各種食品問題,食品添加劑引起血脂增高、血壓增高、血糖增高等疾病為了解三高疾病是否與性別有關,醫(yī)院隨機對入院的60人進行了問卷調(diào)查,得到了如下的列聯(lián)表:

患三高疾病

不患三高疾病

合計

6

30

合計

36

1請將如圖的列聯(lián)表補充完整;若用分層抽樣的方法在患三高疾病的人群中抽人,其中女性抽多少人?

2為了研究三高疾病是否與性別有關,請計算出統(tǒng)計量,并說明你有多大的把握認為三高疾病與性別有關?

下面的臨界值表供參考:

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)的零點至少有兩個,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鐵人中學高二學年某學生對其親屬30人飲食習慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)

(Ⅰ)根據(jù)莖葉圖,幫助這位學生說明其親屬30人的飲食習慣;

(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:

主食蔬菜

主食肉類

合計

50歲以下人數(shù)

50歲以上人數(shù)

合計人數(shù)

(Ⅲ)能否在犯錯誤的概率不超過0.01的前提下認為其親屬的飲食習慣與年齡有關系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f (x)=x-(a+1)ln x-(a∈R),g (x)=x2+ex-xex.

(1)當x∈[1,e] 時,求f (x)的最小值;

(2)當a<1時,若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f (x1)<g (x2)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學;虬嗉壟e行活動,通常需要張貼海報進行宣傳.現(xiàn)讓你設計一張如圖所示的豎向張貼的海報,要求版心面積為128 dm2,上、下兩邊各空2 dm,左、右兩邊各空1 dm.如何設計海報的尺寸,才能使四周空白面積最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

同步練習冊答案