【題目】把2支相同的晨光簽字筆,3支相同英雄鋼筆全部分給4名優(yōu)秀學(xué)生,每名學(xué)生至少1支,則不同的分法有( )

A. 24種 B. 28種 C. 32種 D. 36種

【答案】B

【解析】第一類,有一個(gè)人分到一支鋼筆和一支簽字筆,這中情況下的分法有先將一支鋼筆和一支簽字筆分到一個(gè)人手上,種分法,將剩余的支鋼筆 支簽字筆分給剩余個(gè)同學(xué),種分法,那共有;
第二類,有一個(gè)人分到兩支簽字筆,這種情況下的分法有先將兩支簽字筆分到一個(gè)人手上,種情況,將剩余的支鋼筆分給剩余個(gè)人,只有1種分法那共有 ;
第三類,有一個(gè)人分到兩支鋼筆,這種情況的分法有先將兩支鋼筆分到一個(gè)人手上,種情況,再將剩余的兩支簽字筆和一支鋼筆分給剩余的個(gè)人,種分法,那共有 ;
綜上所述總共有種分法.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB2,BC1DC、EB是兩條母線tanEAB.

(1)求三棱錐CABE的體積;

(2)證明:平面ACD⊥平面ADE

(3)CD上是否存在一點(diǎn)M,使得MO∥平面ADE證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018屆江西省南昌市高三第一輪已知分別為三個(gè)內(nèi)角的對(duì)邊,且

Ⅰ)求

Ⅱ)若邊上的中線, , ,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的極值點(diǎn),試研究函數(shù)的單調(diào)性,并求的極值;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: , ,,,,.把年齡落在區(qū)間內(nèi)的人分別稱為“青少年”和“中老年”.

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù)

(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注“帶一路”是否和年齡段有關(guān)?

關(guān)注

不關(guān)注

合計(jì)

青少年

15

中老年

合計(jì)

50

50

100

附:參考公式,其中

臨界值表:

/td>

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若兩函數(shù)圖象有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)的取值范圍;

(2)若, ,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中, , 平面,在平行四邊形中, , ,

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.

(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;

(2)若是曲線上的動(dòng)點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案