【題目】在如圖所示的幾何體中, , , 平面,在平行四邊形中, , , .
(1)求證: 平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】【試題分析】(1)連接交于,取中點(diǎn),連接, ,利用中位線證明,四邊形為平行四邊形,從而,由此證得平面.(2)以為原點(diǎn), , , 的方向?yàn)?/span>軸, 軸, 軸的正方向建立空間直角坐標(biāo)系,通過計(jì)算平面和平面的法向量來求二面角的余弦值.
【試題解析】
(1)證明:連接交于,取中點(diǎn),連接, ,
因?yàn)?/span>, ,又,
所以, ,從而, 平面, 平面,
所以平面.
(2)在平行四邊形中,由于, , ,則,又平面,則以為原點(diǎn), , , 的方向?yàn)?/span>軸, 軸, 軸的正方向建立空間直角坐標(biāo)系,則, , , , ,
則, , ,
設(shè)平面的一個(gè)法向量為,
則由
令,得, ,所以,
,設(shè)平面的一個(gè)法向量為,
則由即
令,得, ,所以,
,所以,
所以所求二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內(nèi)的交點(diǎn)為,且.
(1)求橢圓的方程;
(2)過點(diǎn)的直線交橢圓于兩點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體中, , ,點(diǎn), , 分別為, , 的中點(diǎn),過點(diǎn)的平面與平面平行,且與長(zhǎng)方體的面相交,交線圍成一個(gè)幾何圖形.
(1)在圖中畫出這個(gè)幾何圖形(說明畫法,不需要說明理由);
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把2支相同的晨光簽字筆,3支相同英雄鋼筆全部分給4名優(yōu)秀學(xué)生,每名學(xué)生至少1支,則不同的分法有( )
A. 24種 B. 28種 C. 32種 D. 36種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),試問方程是否有實(shí)數(shù)根?若有,求出所有實(shí)數(shù)根;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第三屆移動(dòng)互聯(lián)創(chuàng)新大賽,于2017年3月~10月期間舉行,為了選出優(yōu)秀選手,某高校先在計(jì)算機(jī)科學(xué)系選出一種子選手,再從全校征集出3位志愿者分別與進(jìn)行一場(chǎng)技術(shù)對(duì)抗賽,根據(jù)以往經(jīng)驗(yàn), 與這三位志愿者進(jìn)行比賽一場(chǎng)獲勝的概率分別為,且各場(chǎng)輸贏互不影響.
(1)求甲恰好獲勝兩場(chǎng)的概率;
(2)求甲獲勝場(chǎng)數(shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸正半軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個(gè)單位,得到函數(shù)的圖象,則下列敘述不正確的是( )
A. 的圖象關(guān)于點(diǎn)對(duì)稱 B. 的圖象關(guān)于直線對(duì)稱
C. 在上是增函數(shù) D. 是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中, , , , , 是棱的中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)若為棱上一點(diǎn),滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面半徑為,母線長(zhǎng)為的圓柱的軸截面是四邊形,線段上的兩動(dòng)點(diǎn), 滿足.點(diǎn)在底面圓上,且, 為線段的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)四棱錐的體積是否為定值,若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com