【題目】在直角坐標系中,曲線上的點均在曲線外,且對上任意一點,到直線的距離等于該點與曲線上點的距離的最小值.

(1)求動點的軌跡的方程;

(2)過點的直線與曲線交于不同的兩點、,過點的直線與曲線交于另一點,且直線過點,求證:直線過定點.

【答案】(1);(2)

【解析】分析:(1)設,則到直線的距離等于,又到圓上的點的距離的最小值為 ,化簡可得結果;(2)設點,可得直線的方程,直線的方程與直線的方程,結合點在直線上,可得直線的方程得,從而可得結果.

詳解(1)由已知得曲線是以為圓心,為半徑的圓

,則到直線的距離等于,又到圓上的點的距離的最小值為,

所以由已知可得 ,化簡得,

所以曲線的方程為

(2)設點,易得直線的斜率均存在,

從而直線的斜率,

所以直線的方程是,

,

同理直線的方程為,

直線的方程為,

在直線上,所以,即,

在直線上,,即,

化簡得

代入直線的方程得,

直線過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的值域;

(2)試問:函數(shù)的圖象上是否存在關于坐標原點對稱的點,若存在,求出這些點的坐標;若不存在,說明理由;

(3)若方程的三個實數(shù)根、、滿足:,且,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分形幾何學是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學.分形的外表結構極為復雜,但其內(nèi)部卻是有規(guī)律可尋的.一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為,在線段上取兩個點,使得,以為一邊在線段的上方做一個正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個圖形(圖1為第1個圖形)中的所有線段長的和為,現(xiàn)給出有關數(shù)列的四個命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對任意的正整數(shù),都有

④存在最大的正數(shù),使得對任意的正整數(shù),都有

其中真命題的序號是________________(請寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 若方程恰有三個實數(shù)根,則實數(shù)的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中,二面角是直二面角,,,

(1)求證:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知底面為菱形,,,為對角線的交點,底面

(1)求異面直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓與橢圓的離心率相同.

(1)求的值;

(2)過橢圓的左頂點作直線,交橢圓于另一點,交橢圓兩點(點之間).①求面積的最大值(為坐標原點);②設的中點為,橢圓的右頂點為,直線與直線的交點為,試探究點是否在某一條定直線上運動,若是,求出該直線方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是以,為焦點的雙曲線上的一點,且,則的周長為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù)的性質(zhì)描述,正確的是__________.的定義域為;②的值域為;③的圖象關于原點對稱;④在定義域上是增函數(shù).

查看答案和解析>>

同步練習冊答案