【題目】設(shè)函數(shù),().
(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)am的值;
(2)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論;
(3)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
【答案】(1),.(2)不可能有三個(gè)不同的實(shí)根,證明見解析. (3)
【解析】
(1)求導(dǎo)根據(jù)導(dǎo)數(shù)等于斜率,過(guò)點(diǎn)計(jì)算得到答案.
(2)討論,得到在至多1個(gè)實(shí)根,得到答案.
(3)不等式等價(jià)于,令,則,根據(jù)單調(diào)性得到答案.
(1),則,故,,
解得,.
(2)不可能有三個(gè)不同的實(shí)根,證明如下:
令,
如果有三個(gè)不同的實(shí)根,則至少要有三個(gè)單調(diào)區(qū)間,
則至少兩個(gè)不等實(shí)根,所以只要證明在至多1個(gè)實(shí)根,
,,
1°當(dāng)時(shí),,,∴,∴在單調(diào)遞增,∴在至多1個(gè)實(shí)根;
2°當(dāng)時(shí),,∴在單調(diào)遞增,
∴,又因?yàn)?/span>時(shí),∴,
∴在沒(méi)有實(shí)根
綜合1°2°可知,在至多1個(gè)實(shí)根,所以得證.
(3)∵對(duì)任意恒成立,且,
∴對(duì)任意恒成立,
∴對(duì)任意恒成立,
令,
則對(duì)任意恒成立,
∵時(shí),且,,
∴在單調(diào)遞增∴在恒成立,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知傾斜角為的直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過(guò)做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為)
組別 | 步數(shù)分組 | 頻數(shù) |
2 | ||
10 | ||
2 | ||
(Ⅰ)寫出的值,并回答這20名“微信運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,試分別比較與以,與的大。(只需寫出結(jié)論)
(Ⅲ)從上述兩個(gè)組別的數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿足:,且對(duì)任意,(s,k,l,)都有,則稱數(shù)列為“T”數(shù)列.
(1)證明:正項(xiàng)無(wú)窮等差數(shù)列是“T”數(shù)列;
(2)記正項(xiàng)等比數(shù)列的前n項(xiàng)之和為,若數(shù)列是“T”數(shù)列,求數(shù)列公比的取值范圍;
(3)若數(shù)列是“T”數(shù)列,且數(shù)列的前n項(xiàng)之和滿足,求證:數(shù)列是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,空間幾何體中,四邊形是梯形,四邊形是矩形,且平面平面, , , 是線段上的動(dòng)點(diǎn).
(1)求證: ;
(2)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;
(3)在(2)的條件下,求空間幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:
對(duì)于任意,都有成立.
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列,問(wèn):數(shù)列中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)
(1)求證:平面;
(2)在圖2中,若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)在上存在極大值M,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com