【題目】已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)
(1)求證:平面;
(2)在圖2中,若,求直線與平面所成角的正弦值.
【答案】(1)見解析;(2).
【解析】
(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;
(2)在圖2中,過點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.
(1)連接,因?yàn)榈妊菪?/span>中(如圖1),,,
所以與平行且相等,即四邊形為平行四邊形;所以;
又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以;
將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,
所以翻折后四邊形也為平行四邊形;故;
因?yàn)?/span>平面,平面,
所以平面;
(2)在圖2中,過點(diǎn)作,垂足為,連接,,
因?yàn)?/span>,,翻折前梯形的高為,
所以,則,;
所以;
又,,
所以,即,所以;
又,且平面,平面,
所以平面;因此,平面平面;
所以點(diǎn)在底面上的投影必落在直線上;
記為點(diǎn)在底面上的投影,連接,,
則平面;
所以即是直線與平面所成角,
因?yàn)?/span>,所以,
因此,,
故;
因?yàn)?/span>,
所以,
因此,故,
所以.
即直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四個(gè)命題:
①在回歸分析中, 可以用來刻畫回歸效果, 的值越大,模型的擬合效果越好;
②在獨(dú)立性檢驗(yàn)中,隨機(jī)變量的值越大,說明兩個(gè)分類變量有關(guān)系的可能性越大;
③在回歸方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加1個(gè)單位;
④兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對值越接近于1;
其中真命題是:
A. ①④ B. ②④ C. ①② D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),().
(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)am的值;
(2)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論;
(3)若對任意恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯(cuò)誤的是( )
A. 該超市2018年的12個(gè)月中的7月份的收益最高
B. 該超市2018年的12個(gè)月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)令函數(shù)是自然對數(shù)的底數(shù),若函數(shù)有且只有一個(gè)零點(diǎn),判斷與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)為曲線上位于第一,二象限的兩個(gè)動(dòng)點(diǎn),且,射線交曲線分別于,求面積的最小值,并求此時(shí)四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)強(qiáng)國活動(dòng)中,某市圖書館的科技類圖書和時(shí)政類圖書是市民借閱的熱門圖書.為了豐富圖書資源,現(xiàn)對已借閱了科技類圖書的市民(以下簡稱為“問卷市民”)進(jìn)行隨機(jī)問卷調(diào)查,若不借閱時(shí)政類圖書記1分,若借閱時(shí)政類圖書記2分,每位市民選擇是否借閱時(shí)政類圖書的概率均為,市民之間選擇意愿相互獨(dú)立.
(1)從問卷市民中隨機(jī)抽取4人,記總得分為隨機(jī)變量,求的分布列和數(shù)學(xué)期望;
(2)(i)若從問卷市民中隨機(jī)抽取人,記總分恰為分的概率為,求數(shù)列的前10項(xiàng)和;
(ⅱ)在對所有問卷市民進(jìn)行隨機(jī)問卷調(diào)查過程中,記已調(diào)查過的累計(jì)得分恰為分的概率為(比如:表示累計(jì)得分為1分的概率,表示累計(jì)得分為2分的概率,),試探求與之間的關(guān)系,并求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校隨機(jī)抽取100名考生的某次考試成績,按照[75,80),[80,85),[85,90),[90,95),[95,100](滿分100分)分為5組,制成如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于75分).已知第3組,第4組,第5組的頻數(shù)成等差數(shù)列;第1組,第5組,第4組的頻率成等比數(shù)列.
(1)求頻率分布直方圖中a的值,并估計(jì)抽取的100名學(xué)生成績的中位數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)若從第3組、第4組、第5組中按分層抽樣的方法抽取6人,并從中選出3人,求這3人中至少有1人來自第4組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,點(diǎn)為橢圓上一點(diǎn). 的重心為,內(nèi)心為,且,則該橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com