【題目】已知函數(shù),,且與的圖象有一個(gè)斜率為1的公切線(xiàn)(為自然對(duì)數(shù)的底數(shù)).
(1)求;
(2)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).
【答案】(1)(2)見(jiàn)解析
【解析】
(1)由與的圖象有一個(gè)斜率為1的公切線(xiàn),分別對(duì)與求導(dǎo)并求出切線(xiàn)方程,列出等量關(guān)系可得;
(2)利用換元將轉(zhuǎn)化為二次函數(shù),分類(lèi)討論對(duì)其單調(diào)性,對(duì)圖像特點(diǎn)進(jìn)行分析,分情況討論出函數(shù)的零點(diǎn)個(gè)數(shù).
(1)可得.
在處的切線(xiàn)方程為,
即.
.
在處的切線(xiàn)方程為,
故
可得.
(2)由(1)可得,
,
令,則,
,
時(shí),有兩根,
且,
,
得:,
在上,,
在上,,
此時(shí),.
又時(shí),時(shí),.
故在和上,
各有1個(gè)零點(diǎn).
時(shí),
最小值為,故僅有1個(gè)零點(diǎn).
時(shí),.
其中,同,
在與上,
各有1個(gè)零點(diǎn),
時(shí),,僅在有1個(gè)零點(diǎn),
時(shí),對(duì)方程.
方程有兩個(gè)正根,.
在上,,在上,,在,.
由,可得,
故.
,
故.
故在上,,
在上,,
在上,有1個(gè)零點(diǎn):.
時(shí),恒成立,
為增函數(shù),僅有1個(gè)零點(diǎn):.
綜上,或時(shí),有1個(gè)零點(diǎn),
或時(shí),有2個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩定點(diǎn),,點(diǎn)是平面內(nèi)的動(dòng)點(diǎn),且,記的軌跡是.
(1)求曲線(xiàn)的方程;
(2)過(guò)點(diǎn)引直線(xiàn)交曲線(xiàn)于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,證明直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅鈴蟲(chóng)是棉花的主要害蟲(chóng)之一,能對(duì)農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲(chóng)的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產(chǎn)卵數(shù)/個(gè) | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據(jù)散點(diǎn)圖判斷,與(其中自然對(duì)數(shù)的底數(shù))哪一個(gè)更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計(jì)算結(jié)果精確到小數(shù)點(diǎn)后第三位)
(2)根據(jù)以往統(tǒng)計(jì),該地每年平均溫度達(dá)到28℃以上時(shí)紅鈴蟲(chóng)會(huì)造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達(dá)到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.
②當(dāng)取最大值時(shí),記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.
附:線(xiàn)性回歸方程系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,直線(xiàn)與橢圓的兩交點(diǎn)間距離為.
(1)求橢圓的方程;
(2)如圖,設(shè)是橢圓上的一動(dòng)點(diǎn),由原點(diǎn)向圓引兩條切線(xiàn),分別交橢圓于點(diǎn),若直線(xiàn)的斜率均存在,并分別記為,求證:為定值.
(3)在(2)的條件下,試問(wèn)是否為定值?若是,求出該值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)與橢圓交兩點(diǎn),是坐標(biāo)原點(diǎn),分別過(guò)點(diǎn)作,的平行線(xiàn),兩平行線(xiàn)的交點(diǎn)剛好在橢圓上,判斷是否為定值?若為定值,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為,且點(diǎn)在直線(xiàn)上
(Ⅰ)求的值和直線(xiàn)的直角坐標(biāo)方程及的參數(shù)方程;
(Ⅱ)已知曲線(xiàn)的參數(shù)方程為,(為參數(shù)),直線(xiàn)與交于兩點(diǎn),求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)若在(1)的條件下,存在實(shí)數(shù),使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·開(kāi)封一模]已知數(shù)列中,,,利用下面程序框圖計(jì)算該數(shù)列的項(xiàng)時(shí),若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線(xiàn)的左、右頂點(diǎn)分別為、,過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),(不與,重合).若直線(xiàn)與直線(xiàn)相交于點(diǎn),試判斷點(diǎn),,是否共線(xiàn),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com