【題目】如圖是2017年第一季度中國某五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量高于4000億元的省份共有3個;

②與去年同期相比,2017年第一季度五個省的總量均實現(xiàn)了增長;

③去年同期的總量前三位依次是省、省、;

④2016年同期省的總量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

【答案】C

【解析】對于①,2017年第一季度GDP總量高于4000億元的省份有A,B,C,D共4省,所以①錯誤;對于②,由圖形知與去年同期相比,2017年第一季度五個省的GDP總量均實現(xiàn)了增長,所以②正確;對于③,根據(jù)已知數(shù)據(jù),去年同期的GDP總量B省為6037.38,D省為6046.07,所以D省最高,故③錯誤;對于④,由圖計算同期C省的GDP總量居于第四位,故④正確。故選C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面ABCD是矩形,⊥平面,的中點,是線段上的點.

(1)當的中點時,求證:∥平面

(2)當= 2:1時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知橢圓兩個焦點的坐標分別是(-2,0),(2,0),并且經(jīng)過點,求它的標準方程;

(2)已知雙曲線兩個焦點的坐標分別是(0,-6),(0,6),并且經(jīng)過點(2,-5),求它的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)),滿足,且時恒成立.

1)求、的值;

2)若,解不等式;

3)是否存在實數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱中,已知側(cè)面.

1)求證 平面;

2是棱長上的一點,若二面角的正弦值為,的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()

A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1:ρ=1,曲線C2(t為參數(shù))

(1)求C1與C2交點的坐標;

(2)若把C1,C2上各點的縱坐標都壓縮為原來的一半,分別得到曲線C1′與C2′,寫出C1′與C2′的參數(shù)方程,C1與C2公共點的個數(shù)和C1′與C2′公共點的個數(shù)是否相同,說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點的直線與拋物線交于,兩點,若,在準線上的射影為,則等于(  ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)

(1)若,求不等式的解;

(2)對任意,,試確定函數(shù)的最小值(用含的代數(shù)式表示),若正數(shù)滿足,則分別取何值時,有最小值,并求出此最小值.

查看答案和解析>>

同步練習冊答案