【題目】已知曲線C1:ρ=1,曲線C2(t為參數(shù))

(1)求C1與C2交點(diǎn)的坐標(biāo);

(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來(lái)的一半,分別得到曲線C1′與C2′,寫出C1′與C2′的參數(shù)方程,C1與C2公共點(diǎn)的個(gè)數(shù)和C1′與C2′公共點(diǎn)的個(gè)數(shù)是否相同,說(shuō)明你的理由.

【答案】(1)(﹣,)(2)見(jiàn)解析

【解析】

(1)結(jié)合,計(jì)算方程,對(duì)于可以消去參數(shù)t,得到普通方程,聯(lián)立兩個(gè)方程,得到交點(diǎn)坐標(biāo),即可。(2)實(shí)際上將y乘以,利用第一題的思想,計(jì)算參數(shù)方程,聯(lián)解兩曲線的普通方程,判定,即可。

(1)∵曲線C1:ρ=1,∴C1的直角坐標(biāo)方程為x2+y2=1,

∴C1是以原點(diǎn)為圓心,以1為半徑的圓,

∵曲線C2(t為參數(shù)),∴C2的普通方程為x﹣y+=0,是直線,

聯(lián)立,解得x=﹣,y=

∴C2與C1只有一個(gè)公共點(diǎn):(﹣,).

(2)壓縮后的參數(shù)方程分別為

(θ為參數(shù))(t為參數(shù)),

化為普通方程為::x2+4y2=1,:y=,

聯(lián)立消元得

其判別式,

∴壓縮后的直線與橢圓仍然只有一個(gè)公共點(diǎn),和C1與C2公共點(diǎn)個(gè)數(shù)相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , 分別為, , 的中點(diǎn).

1)求證: 平面

2)求平面與平面所成銳二面角的大;

3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為25cm的正方形中挖去邊長(zhǎng)為23cm的兩個(gè)等腰直角三角形,現(xiàn)有均勻的粒子散落在正方形中,問(wèn)粒子落在中間帶形區(qū)域的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2017年第一季度中國(guó)某五省情況圖,則下列陳述正確的是( )

①2017年第一季度 總量高于4000億元的省份共有3個(gè);

②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長(zhǎng);

③去年同期的總量前三位依次是省、省、省;

④2016年同期省的總量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程的不同實(shí)數(shù)根的個(gè)數(shù)為,則的所有可能值為( )

A. 3 B. 1或3 C. 3或5 D. 1或3或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當(dāng)時(shí), ).

(1)當(dāng)時(shí),求的解析式;

(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;

(3)是否存在,使得當(dāng)時(shí), 有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,焦點(diǎn)為,其準(zhǔn)線與軸交于點(diǎn).橢圓:分別以為左、右焦點(diǎn),其離心率,且拋物線和橢圓的一個(gè)交點(diǎn)記為.

(1)當(dāng)時(shí),求橢圓的標(biāo)準(zhǔn)方程;

(2)(1)的條件下,若直線經(jīng)過(guò)橢圓的右焦點(diǎn),且與拋物線相交于,兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰中, ,腰長(zhǎng)為, 、分別是邊、的中點(diǎn),將沿翻折,得到四棱錐,且為棱中點(diǎn),

(Ⅰ)求證: 平面;

(Ⅱ)在線段上是否存在一點(diǎn),使得平面?若存在,求二面角的余弦值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下結(jié)論錯(cuò)誤的是(

A.命題“若,則”的逆否命題為“若,則

B.命題“”是“”的充分條件

C.命題“若,則有實(shí)根”的逆命題為真命題

D.命題“,則”的否命題是“,則

查看答案和解析>>

同步練習(xí)冊(cè)答案