【題目】如圖,四棱錐,四邊形為平行四邊形,,,,,,,為中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).
【解析】
(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證得結(jié)論;
(2)推導(dǎo)出平面,可得出,再由結(jié)合線面垂直的判定定理可得出平面,最后利用面面垂直的判定定理可證得結(jié)論;
(3)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,利用空間向量法能計(jì)算出二面角的余弦值.
(1)四邊形為平行四邊形,,為中點(diǎn),
為中點(diǎn),,
平面,平面,平面;
(2)四邊形為平行四邊形,,為、中點(diǎn),
,,,,
,平面,
平面,,
又,,平面,
平面,平面平面;
(3)以點(diǎn)為坐標(biāo)原點(diǎn),以、分別為軸、軸,過(guò)且與平面垂直的直線為軸,建立如圖所示空間直角坐標(biāo)系,
,,,,,
,,,,
,,,,
、、、,
,,,
設(shè)平面和平面的法向量分別為,,
由,得,令,可得,
由,得,令,可得,
,
由圖形可知,二面角的平面角為鈍角,它的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間單調(diào)遞增,下述三個(gè)結(jié)論:①的取值范圍是;②在存在零點(diǎn);③在至多有4個(gè)極值點(diǎn).其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)在側(cè)棱上是否存在點(diǎn)E,使與底面所成的角為45°?若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的離心率為,且橢圓C的中心O關(guān)于直線的對(duì)稱(chēng)點(diǎn)落在直線上.
(1)求橢圓C的方程;
(2)設(shè)P,M、N是橢圓C上關(guān)于x軸對(duì)稱(chēng)的任意兩點(diǎn),連接交橢圓C于另一點(diǎn)E,求直線的斜率取值范圍,并證明直線與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)調(diào)查某城市80名有子女在讀小學(xué)的成年人,以研究晚上八點(diǎn)至十點(diǎn)時(shí)間段輔導(dǎo)子女作業(yè)與性別的關(guān)系,得到下面的數(shù)據(jù)表:
是否輔導(dǎo) 性別 | 輔導(dǎo) | 不輔導(dǎo) | 合計(jì) |
男 | 25 | 60 | |
女 | |||
合計(jì) | 40 | 80 |
(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整;
(2)用樣本的頻率估計(jì)總體的概率,估計(jì)這個(gè)城市有子女在讀小學(xué)的成人女性晚上八點(diǎn)至十點(diǎn)輔導(dǎo)子女作業(yè)的概率;
(3)根據(jù)以上數(shù)據(jù),能否有99%以上的把握認(rèn)為“晚上八點(diǎn)至十點(diǎn)時(shí)間段是否輔導(dǎo)子女作業(yè)與性別有關(guān)?”.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號(hào)召全體學(xué)生“停課不停學(xué)”.自月日起,高三年級(jí)學(xué)生通過(guò)收看“陽(yáng)光校園·空中黔課”進(jìn)行線上網(wǎng)絡(luò)學(xué)習(xí).為了檢測(cè)線上網(wǎng)絡(luò)學(xué)習(xí)效果,某中學(xué)隨機(jī)抽取名高三年級(jí)學(xué)生做“是否準(zhǔn)時(shí)提交作業(yè)”的問(wèn)卷調(diào)查,并組織了一場(chǎng)線上測(cè)試,調(diào)查發(fā)現(xiàn)有名學(xué)生每天準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測(cè)試成績(jī)得頻率分布直方圖(如圖所示);另外名學(xué)生偶爾沒(méi)有準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測(cè)試成績(jī)得莖葉圖(如圖所示,單位:分)
(1)成績(jī)不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認(rèn)為成績(jī)?nèi)〉?/span>等與每天準(zhǔn)時(shí)提交作業(yè)有關(guān)?
準(zhǔn)時(shí)提交作業(yè)與成績(jī)等次列聯(lián)表 | 單位:人 | ||
A等 | 非A等 | 合計(jì) | |
每天準(zhǔn)時(shí)提交作業(yè) | |||
偶爾沒(méi)有準(zhǔn)時(shí)提交作業(yè) | |||
合計(jì) |
(2)成績(jī)低于分為不合格,從這名學(xué)生里成績(jī)不合格的學(xué)生中再抽取人,其中每天準(zhǔn)時(shí)提交作業(yè)的學(xué)生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,回答所提問(wèn)題:設(shè)函數(shù),①的定義域?yàn)?/span>,其圖像是一條連續(xù)不斷的曲線;②是偶函數(shù);③在上不是單調(diào)函數(shù);④恰有個(gè)零點(diǎn),寫(xiě)出符合上述①②④條件的一個(gè)函數(shù)的解析式是______;寫(xiě)出符合上述所有條件的一個(gè)函數(shù)的解析式是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年初,新型冠狀病毒肺炎(COVID-19)在我國(guó)爆發(fā),全國(guó)人民團(tuán)結(jié)一心、積極抗疫,為全世界疫情防控爭(zhēng)取了寶貴的時(shí)間,積累了豐富的經(jīng)驗(yàn).某研究小組為了研究某城市肺炎感染人數(shù)的增長(zhǎng)情況,在官方網(wǎng)站.上搜集了7組數(shù)據(jù),并依據(jù)數(shù)據(jù)制成如下散點(diǎn)圖:
圖中表示日期代號(hào)(例如2月1日記為“1”,2月2日記為“2”,以此類(lèi)推).通過(guò)對(duì)散點(diǎn)圖的分析,結(jié)合病毒傳播的相關(guān)知識(shí),該研究小組決定用指數(shù)型函數(shù)模型來(lái)擬合,為求出關(guān)于的回歸方程,可令,則與線性相關(guān).初步整理后,得到如下數(shù)據(jù):,.
(1)根據(jù)所給數(shù)據(jù),求出關(guān)于的線性回歸方程:
(2)求關(guān)于的回歸方程;若防控不當(dāng),請(qǐng)問(wèn)為何值時(shí),累計(jì)確診人數(shù)的預(yù)報(bào)值將超過(guò)1000人?(參考數(shù)據(jù):,結(jié)果保留整數(shù))
附:對(duì)于一組數(shù)據(jù),其線性回歸方程的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com