【題目】已知函數(shù)在區(qū)間單調(diào)遞增,下述三個(gè)結(jié)論:①的取值范圍是;②在存在零點(diǎn);③在至多有4個(gè)極值點(diǎn).其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.②③D.①②③
【答案】D
【解析】
根據(jù)題意分析出,再由函數(shù)為增函數(shù)知,即可求出,判斷①;作出取兩個(gè)端點(diǎn)時(shí)和圖象,數(shù)形結(jié)合即可判斷②③.
當(dāng)時(shí),,
∵在區(qū)間上單調(diào)遞增,∴,∴,故①正確;
作出和在的圖象如下:
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/18/2487522753945600/2488179565264896/EXPLANATION/dcd4ce6d090b4e6893acb235d72821fc.png]
由圖可知②③正確.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=bsin(A+).
(1)求A;
(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)行業(yè)迎來了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對(duì)本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據(jù)莖葉圖判斷甲、乙兩家電商對(duì)這種產(chǎn)品的銷售誰更穩(wěn)定些?
(2)為了綜合評(píng)估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬元的天數(shù)分別記為,令,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若都屬于區(qū)間且,,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐S-ABC中,側(cè)棱SA,SB,SC兩兩成等角,且長度分別為a,b,c,設(shè)二面角S-BC-A,S-AC–B,S-AB-C的大小為,若則α,β,γ的大小關(guān)系是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求,并求的單調(diào)區(qū)間;
(2)證明:當(dāng),時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場(chǎng)的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計(jì)分析,得到甲在和乙的第一場(chǎng)比賽中,取勝的概率為0.5,受心理方面的影響,前一場(chǎng)比賽結(jié)果會(huì)對(duì)甲的下一場(chǎng)比賽產(chǎn)生影響,如果甲在某一場(chǎng)比賽中取勝,則下一場(chǎng)取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )
A.0.162B.0.18C.0.168D.0.174
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,,是正三角形,且平面平面ABC,,E,G分別為AB,BC的中點(diǎn).
(Ⅰ)證明:平面ABD;
(Ⅱ)若F是線段DE的中點(diǎn),求AC與平面FGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,四邊形為平行四邊形,,,,,,,為中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com