【題目】近年來,我國電子商務行業(yè)迎來了蓬勃發(fā)展的新機遇,但是電子商務行業(yè)由于缺乏監(jiān)管,服務質量有待提高.某部門為了對本地的電商行業(yè)進行有效監(jiān)管,調查了甲、乙兩家電商的某種同類產品連續(xù)十天的銷售額(單位:萬元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據莖葉圖判斷甲、乙兩家電商對這種產品的銷售誰更穩(wěn)定些?
(2)為了綜合評估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數據中各抽取兩天的銷售數據,其中銷售額不低于120萬元的天數分別記為,令,求隨機變量Y的分布列和數學期望.
【答案】甲電商對這種產品的銷售誰更穩(wěn)定. (2) 分布列見解析,數學期望為.
【解析】
(1)先分別求出甲、乙電商連續(xù)十天的銷售額的平均數,再求出其方差,從而作出判斷.
(2)根據意義甲電商對這種產品的銷售額不低于120萬元的天數有5天,乙電商對這種產品的銷售額不低于120萬元的天數有6天. 的所有可能取值為0,1,2,的所有可能取值為0,1,2,由,所以隨機變量Y的所有可能取值為0,1,2,3,4,然后分別求出概率得出分布列求出期望.
(1) 設甲、乙電商連續(xù)十天的銷售額的平均數分別為,方差分別為
(萬元)
(萬元)
由,所以甲電商對這種產品的銷售誰更穩(wěn)定.
(2)由題意的所有可能取值為0,1,2,的所有可能取值為0,1,2,
由,所以隨機變量Y的所有可能取值為0,1,2,3,4
其中甲電商對這種產品的銷售額不低于120萬元的天數有5天.
乙電商對這種產品的銷售額不低于120萬元的天數有6天.
則隨機變量Y的分布列為>
0 | 1 | 2 | 3 | 4 | |
則隨機變量Y的數學期望為
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,將曲線(為參數) 上任意一點經過伸縮變換后得到曲線.以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設直線與曲線交于兩點,,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列為正項等比數列,為的前項和,若,.
(1)求數列的通項公式;
(2)從三個條件:①;②;③中任選一個作為已知條件,求數列的前項和.
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為C、D,且過點,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標原點,設直線CP交定直線x = m于點M,當m為何值時,為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全民抗擊新冠肺炎疫情期間,北京市開展了“停課不停學”活動,此活動為學生提供了多種網絡課程資源以供選擇使用.活動開展一個月后,某學校隨機抽取了高三年級的甲、乙兩個班級進行網絡問卷調查,統計學生每天的學習時間,將樣本數據分成五組,并整理得到如下頻率分布直方圖:
(1)已知該校高三年級共有600名學生,根據甲班的統計數據,估計該校高三年級每天學習時間達到5小時及以上的學生人數;
(2)已知這兩個班級各有40名學生,從甲、乙兩個班級每天學習時間不足4小時的學生中隨機抽取3人,記從甲班抽到的學生人數為,求的分布列和數學期望;
(3)記甲、乙兩個班級學生每天學習時間的方差分別為,,試比較與的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在區(qū)間單調遞增,下述三個結論:①的取值范圍是;②在存在零點;③在至多有4個極值點.其中所有正確結論的編號是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)在側棱上是否存在點E,使與底面所成的角為45°?若存在,求的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com