【題目】甲、乙兩人進行象棋比賽,采取五局三勝制(不考慮平局,先贏得三場的人為獲勝者,比賽結(jié)束).根據(jù)前期的統(tǒng)計分析,得到甲在和乙的第一場比賽中,取勝的概率為0.5,受心理方面的影響,前一場比賽結(jié)果會對甲的下一場比賽產(chǎn)生影響,如果甲在某一場比賽中取勝,則下一場取勝率提高0.1,反之,降低0.1.則甲以3:1取得勝利的概率為( )

A.0.162B.0.18C.0.168D.0.174

【答案】D

【解析】

設(shè)甲在第一、二、三、四局比賽中獲勝分別為事件,則所求概率,再根據(jù)概率的計算公式即可求得答案.

解:設(shè)甲在第一、二、三、四局比賽中獲勝分別為事件,

由題意,甲要以3:1取得勝利可能是,,,

∴由概率得,甲以3:1取得勝利的概率

,

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將曲線(為參數(shù)) 上任意一點經(jīng)過伸縮變換后得到曲線.以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,直線的極坐標方程為

1)求直線的普通方程和曲線的直角坐標方程;

2)設(shè)直線與曲線交于兩點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的最小值;

2)若,討論的單調(diào)性;

3)若,上的最小值,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在區(qū)間單調(diào)遞增,下述三個結(jié)論:①的取值范圍是;②存在零點;③至多有4個極值點.其中所有正確結(jié)論的編號是( )

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”. 為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須相鄰安排的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的右準線為直線,左頂點為,右焦點為. 已知斜率為2的直線經(jīng)過點,與橢圓相交于兩點,且到直線的距離為

1)求橢圓的標準方程;

2)若過的直線與直線分別相交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面平面,為正三角形,為線段的中點.

1)證明:平面平面;

2)若與平面所成角的大小為60°,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)在側(cè)棱上是否存在點E,使與底面所成的角為45°?若存在,求的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號召全體學生“停課不停學”.自日起,高三年級學生通過收看“陽光校園·空中黔課”進行線上網(wǎng)絡學習.為了檢測線上網(wǎng)絡學習效果,某中學隨機抽取名高三年級學生做“是否準時提交作業(yè)”的問卷調(diào)查,并組織了一場線上測試,調(diào)查發(fā)現(xiàn)有名學生每天準時提交作業(yè),根據(jù)他們的線上測試成績得頻率分布直方圖(如圖所示);另外名學生偶爾沒有準時提交作業(yè),根據(jù)他們的線上測試成績得莖葉圖(如圖所示,單位:分)

1)成績不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認為成績?nèi)〉?/span>等與每天準時提交作業(yè)有關(guān)?

準時提交作業(yè)與成績等次列聯(lián)表

單位:人

A

A

合計

每天準時提交作業(yè)

偶爾沒有準時提交作業(yè)

合計

2)成績低于分為不合格,從這名學生里成績不合格的學生中再抽取人,其中每天準時提交作業(yè)的學生人數(shù)為,求的分布列與數(shù)學期望.

附:

查看答案和解析>>

同步練習冊答案