【題目】已知函數(shù).
(1)當(dāng)時,證明: 為偶函數(shù);
(2)若在上單調(diào)遞增,求實數(shù)的取值范圍;
(3)若,求實數(shù)的取值范圍,使在上恒成立.
【答案】(1)見解析;(2);(3).
【解析】試題分析:(1)代入,根據(jù)函數(shù)奇偶性的定義,即可判定為偶函數(shù);
(2)利用函數(shù)單調(diào)性的定義,求得函數(shù)在上單調(diào)遞增,進而得到對任意的恒成立,即可求解實數(shù)的取值范圍;
(3)由(1)、(2)知函數(shù)的最小值,進而得,設(shè),得不等式恒成立,等價于,進而恒成立,利用二次函數(shù)的性質(zhì)即可求解實數(shù)的取值范圍.
試題解析:
(1)當(dāng)時, ,定義域關(guān)于原點對稱,
而,說明為偶函數(shù);
(2)在上任取、,且,
則,
因為,函數(shù)為增函數(shù),得, ,
而在上單調(diào)遞增,得, ,
于是必須恒成立,
即對任意的恒成立,
;
(3)由(1)、(2)知函數(shù)在上遞減,在上遞增,
其最小值,
且,
設(shè),則,
于是不等式恒成立,等價于,
即恒成立,
而,僅當(dāng),即時取最大值,
故
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)在上不單調(diào)時;
①記在上的最大值、最小值分別為,求;
②設(shè),若,對恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中、, 為自然對數(shù)的底數(shù), 是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程.
(1)求該方程表示一條直線的條件;
(2)當(dāng)為何實數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;
(3)已知方程表示的直線在軸上的截距為-3,求實數(shù)的值;
(4)若方程表示的直線的傾斜角是45°,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.
(1)已知、,三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求,的值;
(2)該電子商務(wù)平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放80元的代金券,已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機抽取3人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個條件:①對任意正數(shù),都有;②當(dāng)時, ;③.
(1)求, 的值;
(2)證明在上是減函數(shù);
(3)如果不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的位上網(wǎng)購物者的年齡情況如右圖.
(1)已知、、三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;
(2)該電子商務(wù)平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放元的代金券,潛在消費人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購物者中抽取了人,現(xiàn)在要在這人中隨機抽取人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差不為零的等差數(shù)列中,已知,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,記,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com