【題目】根據某電子商務平臺的調查統(tǒng)計顯示,參與調查的位上網購物者的年齡情況如右圖.
(1)已知、、三個年齡段的上網購物者人數(shù)成等差數(shù)列,求的值;
(2)該電子商務平臺將年齡在之間的人群定義為高消費人群,其他的年齡段定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放元的代金券,潛在消費人群每人發(fā)放元的代金券.已經采用分層抽樣的方式從參與調查的位上網購物者中抽取了人,現(xiàn)在要在這人中隨機抽取人進行回訪,求此三人獲得代金券總和的分布列與數(shù)學期望.
【答案】(1);(2)分布列略,186.
【解析】
試題分析:(1)由于五個組的頻率之和等于1,即五個矩形的面積之和為1,即求得的知;
(2)由已知高消費人群所占比例為,潛在消費人群的比例為,由分層抽樣的性質知抽出的人中,高消費人群有人,潛在消費人群有人,隨機抽取的三人中代金券總和可能的取值為:,由離散隨機變量概率公式列得分布列,繼而求得數(shù)學期望.
試題解析:(1)由于五個組的頻率之和等于1,故:
,
又因為、、三個年齡段的上網購物者人數(shù)成等差數(shù)列
所以
聯(lián)立解出
(3)由已知高消費人群所占比例為,潛在消費人群的比例為
由分層抽樣的性質知抽出的人中,高消費人群有人,潛在消費人群有人,
隨機抽取的三人中代金券總和可能的取值為:
;
;
列表如下:
數(shù)學期望
科目:高中數(shù)學 來源: 題型:
【題目】某地擬建一座長為640米的大橋,假設橋墩等距離分布,經設計部門測算,兩端橋墩造價總共為100萬元,當相鄰兩個橋墩的距離為米時(其中).中間每個橋墩的平均造價為萬元,橋面每1米長的平均造價為萬元.
(1)試將橋的總造價表示為的函數(shù);
(2)為使橋的總造價最低,試問這座大橋中間(兩端橋墩除外)應建多少個橋墩?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,證明: 為偶函數(shù);
(2)若在上單調遞增,求實數(shù)的取值范圍;
(3)若,求實數(shù)的取值范圍,使在上恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分15分)已知橢圓:過點,離心率為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設分別為橢圓的左、右焦點,過的直線與橢圓交于不同兩點,記的內切圓的面積為,求當取最大值時直線的方程,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的標準方程;
(2)已知點,和平面內一點,過點任作直線與橢圓相交于兩點,設直線的斜率分別為,,試求滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進貨的量,該商店從某一年的銷售數(shù)據中,隨機抽取了組數(shù)據作為研究對象,如下圖所示((噸)為該商品進貨量, (天)為銷售天數(shù)):
(Ⅰ)根據上表數(shù)據在下列網格中繪制散點圖:
(Ⅱ)根據上表提供的數(shù)據,求出關于的線性回歸方程;
(Ⅲ)根據(Ⅱ)中的計算結果,若該商店準備一次性進貨該商品噸,預測需要銷售天數(shù);
參考公式和數(shù)據:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地自來水苯超標,當?shù)刈詠硭緦λ|檢測后,決定在水中投放一種藥劑來凈化水質,已知每投放質量為的藥劑后,經過天該藥劑在水中釋放的濃度(毫克/升)滿足,其中,當藥劑在水中的濃度不低于5(毫克/升)時稱為有效凈化;當藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升)時稱為最佳凈化.
(Ⅰ)如果投放的藥劑質量為,試問自來水達到有效凈化一共可持續(xù)幾天?
(Ⅱ)如果投放的藥劑質量為,為了使在9天(從投放藥劑算起包括9天)之內的自來水達到最佳凈化,試確定應該投放的藥劑質量的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com