【題目】某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1 000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)請(qǐng)分析函數(shù)y= +1是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(2)若該公司采用函數(shù)模型y= 作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.
【答案】
(1)解:對(duì)于函數(shù)模型y=f(x)= +1,
當(dāng)x∈[10,1 000]時(shí),f(x)為增函數(shù),
f(x)max=f(1 000)= +1= +1<9,所以f(x)≤9恒成立,
又因?yàn)楫?dāng)x∈[10,1 000]時(shí)f(x)﹣ =﹣ +1≤f(10)=﹣ <0,
所以f(x)≤ 恒成立,
故函數(shù)模型y= -3+1符合公司要求
(2)解:對(duì)于函數(shù)模型y=g(x)= ,即g(x)=10﹣ ,
當(dāng)3a+20>0,即a>﹣ 時(shí)遞增,
為使g(x)≤9對(duì)于x∈[10,1 000]恒成立,
即要g(1 000)≤9,3a+18≥1 000,即a≥ ,
為使g(x)≤ 對(duì)于x∈[10,1 000]恒成立,
即要 ≤5,即x2﹣48x+15a≥0恒成立,
即(x﹣24)2+15a﹣576≥0(x∈[10,1 000])恒成立,又24∈[10,1 000],
故只需15a﹣576≥0即可,
所以a≥ .
綜上,a≥ ,故最小的正整數(shù)a的值為328
【解析】(1)設(shè)獎(jiǎng)勵(lì)函數(shù)模型為y=f(x),根據(jù)“獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,說(shuō)明在定義域上是增函數(shù),且獎(jiǎng)金不超過(guò)9萬(wàn)元,即f(x)≤9,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.即f(x)≤ .(2)先將函數(shù)解析式進(jìn)行化簡(jiǎn),然后根據(jù)函數(shù)的單調(diào)性,以及使g(x)≤9對(duì)x∈[10,1000]恒成立以及使g(x)≤ 對(duì)x∈[10,1000]恒成立,建立不等式,求出相應(yīng)的a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】孝感星河天街購(gòu)物廣場(chǎng)某營(yíng)銷部門(mén)隨機(jī)抽查了100名市民在2017年國(guó)慶長(zhǎng)假期間購(gòu)物廣場(chǎng)的消費(fèi)金額,所得數(shù)據(jù)如表,已知消費(fèi)金額不超過(guò)3千元與超過(guò)3千元的人數(shù)比恰為3:2.
(1)試確定, , , 的值,并補(bǔ)全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費(fèi)金額在和的兩個(gè)群體中抽取5人進(jìn)行問(wèn)卷調(diào)查,則各小組應(yīng)抽取幾人?若從這5人中隨機(jī)選取2人,則此2人來(lái)自同一群體的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓: 的離心率與雙曲線的離心率互為倒數(shù),且橢圓的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線交橢圓于, 兩點(diǎn), ()為橢圓上一點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】孝感車天地關(guān)于某品牌汽車的使用年限(年)和所支出的維修費(fèi)用(千元)由如表的統(tǒng)計(jì)資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫(huà)出散點(diǎn)圖并判斷使用年限與所支出的維修費(fèi)用是否線性相關(guān);如果線性相關(guān),求回歸直線方程;
(2)若使用超過(guò)8年,維修費(fèi)用超過(guò)1.5萬(wàn)元時(shí),車主將處理掉該車,估計(jì)第10年年底時(shí),車主是否會(huì)處理掉該車?
()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)給出的一個(gè)取值,使得曲線存在斜率為的切線,并說(shuō)明理由;
(Ⅱ)若存在極小值和極大值,證明: 的極小值大于極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡(jiǎn)圖,寫(xiě)出函數(shù)f(x)的單調(diào)減區(qū)間及最值.
(3)若關(guān)于x的方程f(x)=m有兩個(gè)解,試說(shuō)出實(shí)數(shù)m的取值范圍.(只要寫(xiě)出結(jié)果,不用給出證明過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過(guò)200度的部分按0.5元/度收費(fèi),超過(guò)200度但不超過(guò)400度的部分按0.8元/度收費(fèi),超過(guò)400度的部分按1.0元/度收費(fèi).
(1)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過(guò)抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過(guò)260元的點(diǎn)80%,求的值;
(3)在滿足(2)的條件下,估計(jì)1月份該市居民用戶平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)為an , 前n項(xiàng)和為sn , 且an是sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式an , bn
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Bn , 試比較 與2的大。
(Ⅲ)設(shè)Tn= ,若對(duì)一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com