【題目】給出下列說法:
①命題“若 ,則 ”的否命題是假命題;
②命題 ,使 ,則 ;
③“ ”是“函數(shù) 為偶函數(shù)”的充要條件;
④命題 “ ,使 ”,命題 “在 中,若 ,則 ”,那么命題為真命題.
其中正確的個數(shù)是( )
A.1B.2C.3D.4
【答案】C
【解析】
寫出否命題,舉反例判斷①;根據(jù)否定的定義判斷②;根據(jù)充分條件以及必要條件的定義以及正弦函數(shù)的性質(zhì)證明即可判斷③;由三角函數(shù)的性質(zhì)判斷為假命題,根據(jù)正弦定理判斷為真命題,即可得出為真命題.
①項,命題“若,則”的否命題為“若,則”
因為,所以否命題是假命題,①項正確;
②項,命題,使,含有一個量詞的否定在否定結論的同時,要改變量詞的屬性,存在量詞改為全稱量詞,則,②項正確;
③項,充分性:當時,函數(shù)為偶函數(shù),充分性成立;
必要性:若函數(shù)為偶函數(shù),則,可得,必要性不成立,③項錯誤;
④項,命題“,使”
因為,所以當時,,即命題為假命題;
命題“在中,若,則”,根據(jù)正弦定理可知
,則,即,所以為真命題,則命題為真命題,④項正確.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】下列關于回歸分析的說法中錯誤的是( )
A.殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
B.兩個模型中殘差平方和越小的模型擬合的效果越好
C.在線性回歸方程中,當解釋變量x每增加一個單位時,預報變量就平均增加0.2個單位
D.甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求的單調(diào)遞增區(qū)間;
(2)若關于的不等式至少有三個不同的整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地有種特產(chǎn)水果很受當?shù)乩习傩諝g迎,但該種水果只能在9月份銷售,且該種水果只能當天食用口感最好,隔天食用口感較差。某超市每年9月份都銷售該特產(chǎn)水果,每天計劃進貨量相同,進貨成本每公斤8元,銷售價每公斤12元;當天未賣出的水果則轉(zhuǎn)賣給水果罐頭廠,但每公斤只能賣到5元。根據(jù)往年銷售經(jīng)驗,每天需求量與當?shù)貧鉁胤秶幸欢P系。如果氣溫不低于30度,需求量為5000公斤;如果氣溫位于,需求量為3500公斤;如果氣溫低于25度,需求量為2000公斤;為了制定今年9月份訂購計劃,統(tǒng)計了前三年9月份的氣溫范圍數(shù)據(jù),得下面的頻數(shù)分布表
氣溫范圍 | |||||
天數(shù) | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.
(1)求今年9月份這種水果一天需求量(單位:公斤)的分布列和數(shù)學期望;
(2)設9月份一天銷售特產(chǎn)水果的利潤為(單位:元),當9月份這種水果一天的進貨量為(單位:公斤)為多少時,的數(shù)學期望達到最大值,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形為矩形, ,為的中點,將沿折起,得到四棱錐,設的中點為,在翻折過程中,得到如下有三個命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個位置,使得.
其中正確命題的序號為__________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國居民生活水平的不斷提高,汽車逐步進入百姓家庭,但隨之面來的交通擁堵和交通事故時有發(fā)生,給人民的生活也帶來了諸多不便.某市為了確保交通安全.決定對交通秩序做進步整頓,對在通路上行駛的前后相鄰兩機動車之間的距離d(米)與機動車行駛速度v(千米/小時)做出如下兩條規(guī)定:
①av2;
②.(其中a是常量,表示車身長度,單位:米)
(1)當時.求機動車的最大行駛速度;
(2)設機動車每小時流量Q,問當機動車行駛速度v≥30(千米/小時)時,機動車以什么樣的狀態(tài)行駛,能使機動車每小時流量Q最大?并說明理由.(機動車每小時流量Q是指每小時通過觀測點的車輛數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重(單位:)與身高(單位:)具有線性相關關系。根據(jù)組樣本數(shù)據(jù),用最小二乘法建立的回歸方程為,則下列結論中不正確的是( )
A.與具有正的線性相關關系
B.回歸直線過樣本點的中心
C.若該大學某女生身高增加,則其體重約增加
D.若該大學某女生身高為,則可斷定其體重必為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過函數(shù)的圖象上一點作傾斜角互補的兩條直線,分別與交與異于的,兩點.
(1)求證:直線的斜率為定值;
(2)如果,兩點的橫坐標均不大于0,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com