【題目】已知是由正整數(shù)組成的無窮數(shù)列,對任意,滿足如下兩個條件:①是的倍數(shù);②.
(1)若,,寫出滿足條件的所有的值;
(2)求證:當(dāng)時,;
(3)求所有可能取值中的最大值.
【答案】(1)(2)見解析(3)85
【解析】
(1)根據(jù)滿足的兩個條件即可得到滿足條件的所有的值;
(2)由,對于任意的,有. 當(dāng)時,成立,即成立;若存在使,由反證法可得矛盾;(3)由(2)知,因?yàn)?/span>且是的倍數(shù),可得所有可能取值中的最大值.
(1)的值可取.
(2)由,對于任意的,有.
當(dāng)時,,即,即.
則成立.
因?yàn)?/span>是的倍數(shù),所以當(dāng)時,有成立.
若存在使,依以上所證,這樣的的個數(shù)是有限的,設(shè)其中最大的為.
則,成立,因?yàn)?/span>是的倍數(shù),故.
由,得.
因此當(dāng)時,.
(3)由上問知,因?yàn)?/span>且是的倍數(shù),
所以滿足下面的不等式:
,.
則,, ,,,,,,
,,當(dāng)時,這個數(shù)列符合條件.
故所求的最大值為85.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)甲、乙兩班共有25名學(xué)生報名參加了一項(xiàng) 測試.這25位學(xué)生的考分編成的莖葉圖,其中有一個數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來表示),但他清楚地記得兩班學(xué)生成績的中位數(shù)相同.
(Ⅰ)求這兩個班學(xué)生成績的中位數(shù)及x的值;
(Ⅱ)如果將這些成績分為“優(yōu)秀”(得分在175分 以上,包括175分)和“過關(guān)”,若學(xué)校再從這兩個班獲得“優(yōu)秀”成績的考生中選出3名代表學(xué)校參加比賽,求這3人中甲班至多有一人入選的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知為圓的直徑,點(diǎn)為線段上一點(diǎn),且,點(diǎn)為圓上一點(diǎn),且.點(diǎn)在圓所在平面上的正投影為點(diǎn),.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,則;
(2)已知.
①化簡f(α);
②若f(α),且,求cos α-sin α的值;
③若,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).
(1)求證:平面;
(2)當(dāng)側(cè)面是正方形,且時,
(。┣蠖娼的大小;
(ⅱ)在線段上是否存在點(diǎn),使得?若存在,指出點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,數(shù)列滿足條件:對于,,且,并有關(guān)系式:,又設(shè)數(shù)列滿足(且,).
(1)求證數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)試問數(shù)列是否為等差數(shù)列,如果是,請寫出公差,如果不是,說明理由;
(3)若,記,,設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,若對任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手每次射擊擊中目標(biāo)的概率是,且各次射擊的結(jié)果互不影響,假設(shè)這名射手射擊3次.
(1)求恰有2次擊中目標(biāo)的概率;
(2)現(xiàn)在對射手的3次射擊進(jìn)行計分:每擊中目標(biāo)1次得1分,未擊中目標(biāo)得0分;若僅有2次連續(xù)擊中,則額外加1分;若3次全擊中,則額外加3分.記為射手射擊3次后的總得分,求的概率分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若不等式在時恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)時,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com