【題目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,則;
(2)已知.
①化簡(jiǎn)f(α);
②若f(α),且,求cos α-sin α的值;
③若,求f(α)的值.
【答案】(1);(2)①;②;③.
【解析】
(1)根據(jù)誘導(dǎo)公式,以及同角三角函數(shù)求得,再求齊次式的值;
(2)利用誘導(dǎo)公式化簡(jiǎn)即可得,根據(jù)與的關(guān)系即可求得;根據(jù)誘導(dǎo)公式即可求得.
(1)由已知得-sin θ-2cos θ=0,故tan θ=-2,
則.
(2)①
②由f(α)=sin α·cos α=可知,
(cos α-sin α)2=cos2α-2sin α·cos α+sin2α
=1-2sin α·cos α=1-2×,
又∵,∴cos αsin α,
即cos α-sin α0,
∴cos α-sin α=.
③∵α=-6×2π+,
∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個(gè)數(shù)是( )
(1)若函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則為偶函數(shù)的充要條件為對(duì)任意的,都成立;
(2)若函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則“”是“為奇函數(shù)”的必要條件;
(3)函數(shù)對(duì)任意的實(shí)數(shù)都有,則在實(shí)數(shù)集上是增函數(shù);
(4)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)的取值范圍是.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2012年12月18日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測(cè)的74個(gè)城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個(gè)監(jiān)測(cè)站點(diǎn)監(jiān)測(cè)空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個(gè)監(jiān)測(cè)站點(diǎn),以9個(gè)站點(diǎn)測(cè)得的的平均值為依據(jù),播報(bào)我市的空氣質(zhì)量.
(Ⅰ)若某日播報(bào)的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;
(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天在內(nèi).
組數(shù) | 分組 | 天數(shù) |
第一組 | 3 | |
第二組 | 4 | |
第三組 | 4 | |
第四組 | 6 | |
第五組 | 5 | |
第六組 | 4 | |
第七組 | 3 | |
第八組 | 1 |
①鄭州市某中學(xué)利用每周日的時(shí)間進(jìn)行社會(huì)實(shí)踐活動(dòng),以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會(huì)實(shí)踐活動(dòng).以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會(huì)實(shí)踐活動(dòng)的概率;
②在“創(chuàng)建文明城市”活動(dòng)中,驗(yàn)收小組把鄭州市的空氣質(zhì)量作為一個(gè)評(píng)價(jià)指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測(cè)數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評(píng)價(jià),設(shè)抽取到不小于180的天數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2+bx+c>0的解集為{x|2<x<3},求關(guān)于x的不等式cx2+bx+a<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的離心率是.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn),為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為,若,請(qǐng)判斷直線是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),若函數(shù)沒有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是由正整數(shù)組成的無窮數(shù)列,對(duì)任意,滿足如下兩個(gè)條件:①是的倍數(shù);②.
(1)若,,寫出滿足條件的所有的值;
(2)求證:當(dāng)時(shí),;
(3)求所有可能取值中的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)是軸與圓的一個(gè)公共點(diǎn)(異于原點(diǎn)),拋物線的準(zhǔn)線為,上橫坐標(biāo)為的點(diǎn)到的距離等于.
(1)求的方程;
(2)直線與圓相切且與相交于,兩點(diǎn),若的面積為4,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )
A. 若是的極小值點(diǎn),則在區(qū)間上單調(diào)遞減
B. ,使
C. 函數(shù)的圖像可以是中心對(duì)稱圖形
D. 若是的極值點(diǎn),則
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com