【題目】已知函數(shù) 是偶函數(shù),直線y=t與函數(shù)y=f(x)的圖象自左向右依次交于四個不同點(diǎn)A,B,C,D.若AB=BC,則實(shí)數(shù)t的值為

【答案】﹣
【解析】解:因?yàn)閒(x)是偶函數(shù),所以x>0時恒有f(﹣x)=f(x),即x2﹣bx+c=ax2﹣2x﹣1, 所以(a﹣1)x2+(b﹣2)x﹣c﹣1=0,
所以 ,解得a=1,b=2,c=﹣1,
所以f(x)= ,
由t=x2+2x﹣1,即x2+2x﹣1﹣t=0,解得x=﹣1± ,
故xA=﹣1﹣ ,xB=﹣1+ ,
由t=x2﹣2x﹣1,即x2﹣2x﹣1﹣t=0,解得x=1± ,
故xC=1﹣ ,
因?yàn)锳B=BC,所以xB﹣xA=xC﹣xB , 即2 =2﹣2 ,解得t=﹣ ,
所以答案是:﹣
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的奇偶性的相關(guān)知識,掌握偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,以及對函數(shù)的零點(diǎn)的理解,了解函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知圓及點(diǎn)

(1)若直線平行于,與圓相交于, 兩點(diǎn), ,求直線的方程;

(2)在圓C上是否存在點(diǎn)P,使得 ?若存在,求點(diǎn)P的個數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點(diǎn),現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點(diǎn),平面BCH與AE、AF分別交于I、G兩點(diǎn)
(Ⅰ)求證:IH∥BC;
(Ⅱ)求直線AE與平面角GIC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2,圓心角為 的扇形金屬材料中剪出一個四邊形MNQP,其中M、N兩點(diǎn)分別在半徑OA、OB上,P、Q兩點(diǎn)在弧 上,且OM=ON,MN∥PQ.
(1)若M、N分別是OA、OB中點(diǎn),求四邊形MNQP面積的最大值.
(2)PQ=2,求四邊形MNQP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是AB=2,BC= 的矩形,△PAB是等邊三角形,側(cè)面PAB⊥底面ABCD
(Ⅰ)證明:BC⊥面PAB
(Ⅱ)求側(cè)棱PC與底面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有24名男生和26名女生,數(shù)據(jù)a1 , a2 , …,a50是該班50名學(xué)生在一次數(shù)學(xué)學(xué)業(yè)水平模擬考試的成績,下面的程序用來同時統(tǒng)計(jì)全班成績的平均數(shù):A,男生平均分:M,女生平均分:W;為了便于區(qū)別性別,輸入時,男生的成績用正數(shù),女生的成績用其成績的相反數(shù),那么在圖里空白的判斷框和處理框中,應(yīng)分別填入下列四個選項(xiàng)中的(

A.T>0?,
B.T<0?, ??
C.T<0?,
D.T>0?,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥側(cè)面BB1CC1

(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1(要求說明理由).
(3)在(2)的條件下,若AB= ,求二面角A﹣EB1﹣A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市準(zhǔn)備實(shí)施天然氣價格階梯制,現(xiàn)提前調(diào)查市民對天然氣價格階梯制的態(tài)度,隨機(jī)抽查了50名市民,現(xiàn)將調(diào)查情況整理成了被調(diào)查者的頻率分布直方圖(如圖)和贊成者的頻數(shù)表如下:

(Ⅰ)若從年齡在,的被調(diào)查者中各隨機(jī)選取2人進(jìn)行調(diào)查,求所選取的4人中至少有2人對天然氣價格階梯制持贊成態(tài)度的概率;

(Ⅱ)若從年齡在,的被調(diào)查者中各隨機(jī)選取2人進(jìn)行調(diào)查,記選取的4人中對天然氣價格實(shí)施階梯制持不贊成態(tài)度的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案