【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件
【答案】B
【解析】解:|x﹣2|+|x+2|表示數(shù)軸上的x 到﹣2和2的距離之和,故其最小值為4,不等式|x﹣2|+|x+2|>m的解集是R等價于 m<4,即 p成立 等價于 m<4.
關(guān)于x的不等式x2+mx+4>0的解集是R等價于 判別式小于0,即 m2﹣16<0,即﹣4<m<4.
故由p成立不能推出q成立,但由q成立能推出p成立,故p成立是q成立的必要不充分條件,
故選 B.
【考點精析】根據(jù)題目的已知條件,利用解一元二次不等式的相關(guān)知識可以得到問題的答案,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:A1C1=AB1;
(Ⅱ)若AC⊥AB1 , ∠BCC1=120°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
設(shè)數(shù)列的前項的和為,已知.
⑴求,及;
⑵設(shè),若對一切,均有,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是偶函數(shù),直線y=t與函數(shù)y=f(x)的圖象自左向右依次交于四個不同點A,B,C,D.若AB=BC,則實數(shù)t的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)經(jīng)過點(0, ),離心率為 ,左右焦點分別為F1(﹣c,0),F(xiàn)2(c,0).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=﹣ x+m與橢圓交于A、B兩點,與以F1F2為直徑的圓交于C、D兩點,且滿足 = ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系中, 為極點,半徑為2的圓的圓心坐標(biāo)為.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)直角坐標(biāo)系的原點與極點重合, 軸非負關(guān)軸與極軸重合,直線的參數(shù)方程為(為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對(t,P),點(t,P)落在下圖中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時間t(天)的部分數(shù)據(jù)如下表所示.
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫出該種股票每股交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時間t(天)的一次函數(shù)關(guān)系式;
(3)在(2)的結(jié)論下,用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾日交易額最大,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,求點到直線的最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com