【題目】對(duì)于函數(shù)f(x)=(|x﹣2|+1)4,給出如下三個(gè)命題:①f(x+2)是偶函數(shù);②f(x)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③f(x)沒(méi)有最小值.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 0
【答案】B
【解析】
由函數(shù)奇偶性的定義可判斷①正確;討論x>2,x<2,可以去掉絕對(duì)值,求得f(x),再利用復(fù)合函數(shù)判定單調(diào)性,即可判斷②正確;由f(x)的單調(diào)性可判斷③錯(cuò)誤。
函數(shù)f(x)=(|x﹣2|+1)4,
設(shè)g(x)=f(x+2)=(|x|+1)4,
g(x)定義域?yàn)?/span>R,且g(﹣x)=g(x),可得g(x)是偶函數(shù),故①正確;
x>2時(shí),f(x)=(x﹣1)4,令=(x﹣1)2則,,
=(x﹣1)2在x>2時(shí)單調(diào)遞增,且在時(shí)單調(diào)遞增,所以x>2時(shí),f(x)=(x﹣1)4 單調(diào)遞增;
x<2時(shí),f(x)=(3﹣x)4,令=(3﹣x)2則,,
t=(3﹣x)2在x<2時(shí)單調(diào)遞減,且在時(shí)單調(diào)遞增,所以x<2時(shí),f(x)=(3﹣x)4單調(diào)遞減。故②正確;
由②可得f(x)在x=2處取得最小值1,故③錯(cuò)誤.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是雙曲線(xiàn)上一點(diǎn), 分別是雙曲線(xiàn)的左、右頂點(diǎn),直線(xiàn)的斜率之積為.
(1)求雙曲線(xiàn)的離心率;
(2)過(guò)雙曲線(xiàn)的右焦點(diǎn)且斜率為的直線(xiàn)交雙曲線(xiàn)于兩點(diǎn), 為坐標(biāo)原點(diǎn), 為雙曲線(xiàn)上一點(diǎn),滿(mǎn)足,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對(duì)名小學(xué)六年級(jí)學(xué)生進(jìn)行了問(wèn)卷調(diào)查,并得到如下列聯(lián)表.平均每天喝以上為“常喝”,體重超過(guò)為“肥胖”.
常喝 | 不常喝 | 合計(jì) | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合計(jì) | 30 |
已知在全部人中隨機(jī)抽取人,抽到肥胖的學(xué)生的概率為.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有的把握認(rèn)為肥胖與常喝碳酸飲料有關(guān)?請(qǐng)說(shuō)明你的理由;
(3)已知常喝碳酸飲料且肥胖的學(xué)生中恰有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學(xué)生中隨機(jī)抽取2人參加一個(gè)有關(guān)健康飲食的電視節(jié)目,求恰好抽到一名男生和一名女生的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀(guān)測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某糧庫(kù)擬建一個(gè)儲(chǔ)糧倉(cāng)如圖所示,其下部是高為2的圓柱,上部是母線(xiàn)長(zhǎng)為2的圓錐,現(xiàn)要設(shè)計(jì)其底面半徑和上部圓錐的高,若設(shè)圓錐的高為,儲(chǔ)糧倉(cāng)的體積為.
(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)
(2)求為何值時(shí),儲(chǔ)糧倉(cāng)的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()當(dāng)時(shí),求的單調(diào)區(qū)間.
()當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值.
()在條件()下,當(dāng)最小值為時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣5:不等式選講
已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個(gè)不同的解,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com