【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若直線經(jīng)過(guò)曲線的焦點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

【答案】(Ⅰ) ;(Ⅱ)

【解析】

(Ⅰ)由直線的參數(shù)方程消去參數(shù)得直線的普通方程,再根據(jù)極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化關(guān)系可得曲線的直角坐標(biāo)方程;

(Ⅱ)根據(jù)已知條件可得直線的參數(shù)方程,將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,根據(jù)直線參數(shù)方程中的參數(shù)的幾何意義和交點(diǎn)的中點(diǎn)可得的值.

(Ⅰ)∵直線的參數(shù)方程為為參數(shù)),

∴直線的普通方程為 ,

,得,即,

∴曲線的直角坐標(biāo)方程為,

(Ⅱ)∵直線經(jīng)過(guò)曲線的焦點(diǎn)

,直線的傾斜角

∴直線的參數(shù)方程為為參數(shù))

代入,得

設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)為

為線段的中點(diǎn),∴點(diǎn)對(duì)應(yīng)的參數(shù)值為

又點(diǎn),則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過(guò)兩點(diǎn)、的直線與圓的位置關(guān)系是(

A.相離B.相切C.相交D.的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓,軸被曲線截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).

1)求實(shí)數(shù)b的值;

2)設(shè)C2軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線C2相交于點(diǎn)A、B,直線MAMB分別與C1交于點(diǎn)D、E.

證明:;

△MAB△MDE的面積分別是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),下列說(shuō)法正確的是( )

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),下列說(shuō)法正確的是( )

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,.

(1)若,求數(shù)列的通項(xiàng)公式;

(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;

(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于雙曲線(),若點(diǎn)滿足,則稱的外部;若點(diǎn)滿足,則稱的內(nèi)部.

(1)證明:直線上的點(diǎn)都在的外部.

(2)若點(diǎn)的坐標(biāo)為,點(diǎn)的內(nèi)部或上,求的最小值.

(3)過(guò)點(diǎn),圓()內(nèi)部及上的點(diǎn)構(gòu)成的圓弧長(zhǎng)等于該圓周長(zhǎng)的一半,求、滿足的關(guān)系式及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小凳凳面為圓形,凳腳為三根細(xì)鋼管.考慮到鋼管的受力等因素,設(shè)計(jì)的小凳應(yīng)滿足:三根細(xì)鋼管相交處的節(jié)點(diǎn)與凳面圓形的圓心的連線垂直于凳面和地面,且分細(xì)鋼管上下兩段的比值為,三只凳腳與地面所成的角均為.是凳面圓周的三等分點(diǎn),厘米,求凳子的高度及三根細(xì)鋼管的總長(zhǎng)度(精確到).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,,且對(duì)一切,均有.

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)若,求數(shù)列的前n項(xiàng)和

3)設(shè)),記數(shù)列的前n項(xiàng)和為,問(wèn):是否存在正整數(shù),對(duì)一切,均有恒成立.若存在,求出所有正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案