【題目】關(guān)于函數(shù),下列說法正確的是( )

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

【答案】C

【解析】

對(duì)于(1),對(duì)函數(shù)求導(dǎo),得出函數(shù)的單調(diào)性,可判斷;

對(duì)于(2)令,對(duì)其求導(dǎo),得出其單調(diào)性,且可得出當(dāng)時(shí),可判斷;

對(duì)于(3),令,對(duì)其求導(dǎo),得出其單調(diào)性,取特殊函數(shù)值,可判斷;

對(duì)于(4),對(duì)函數(shù)求導(dǎo)可得,分析判斷出上單調(diào)遞增,也即是,單調(diào)遞增,將已知條件轉(zhuǎn)化為 上至少有兩個(gè)不同的正根,可得,令 對(duì)求導(dǎo),分析的單調(diào)性,可得出的范圍,可判斷命題.

對(duì)于(1),由題意知,,令,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以的極小值點(diǎn),故(1)正確;

對(duì)于(2)令,則.函數(shù)上單調(diào)遞減, 又當(dāng)時(shí),,

所以函數(shù)有且只有1個(gè)零點(diǎn),故(2)正確;

對(duì)于(3),令,則,

所以函數(shù)單調(diào)遞減,且,所以函數(shù)內(nèi)不是恒成立的,

所以不是恒成立的,故(3)不正確;

對(duì)于(4),因?yàn)?/span>,所以,

,則,所以當(dāng)時(shí),,

所以上單調(diào)遞增,且,所以當(dāng)時(shí),,

所以上單調(diào)遞增,也即是,單調(diào)遞增,

又因?yàn)?/span>上的值域是,所以 ,

上至少有兩個(gè)不同的正根, ,

求導(dǎo)得

,則,所以 上單調(diào)遞增,且,

所以當(dāng)時(shí), ,當(dāng)時(shí),,

所以是單調(diào)遞減,上單調(diào)遞增,所以,而

所以,故(4)正確;

所以正確的命題有:(1)(2)(4),

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過兩點(diǎn)、的直線與圓的位置關(guān)系是(

A.相離B.相切C.相交D.的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左右焦點(diǎn)分別為,,點(diǎn)在橢圓上,且.

1)求橢圓的方程;

2)點(diǎn)P,Q在橢圓上,O為坐標(biāo)原點(diǎn),且直線,的斜率之積為,求證:為定值;

3)直線l過點(diǎn)且與橢圓交于AB兩點(diǎn),問在x軸上是否存在定點(diǎn)M,使得為常數(shù)?若存在,求出點(diǎn)M坐標(biāo)以及此常數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱;②函數(shù)的圖象關(guān)于直線對(duì)稱,則為偶函數(shù);③若對(duì),有,則2的一個(gè)周期;④函數(shù)的圖象關(guān)于直線對(duì)稱.其中正確的命題是______.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行,某市在推出共享單車后,又推出新能源分時(shí)租賃汽車.其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:根據(jù)行駛里程數(shù)按1/公里計(jì)費(fèi);行駛時(shí)間不超過分時(shí),按/分計(jì)費(fèi);超過分時(shí),超出部分按/分計(jì)費(fèi).已知王先生家離上班地點(diǎn)公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費(fèi)的時(shí)間 ()是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了次路上開車花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:

時(shí)間(分)

頻數(shù)

將各時(shí)間段發(fā)生的頻率視為概率,每次路上開車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分.(1)寫出王先生一次租車費(fèi)用(元)與用車時(shí)間(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時(shí)間不超過分為路段暢通”,設(shè)表示3次租用新能源分時(shí)租賃汽車中路段暢通的次數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若直線經(jīng)過曲線的焦點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

(1)若,求數(shù)列的通項(xiàng)公式;

(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;

(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為件.

1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時(shí),該公司的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,且對(duì)一切,均有

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和;

3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有

查看答案和解析>>

同步練習(xí)冊答案