【題目】已知函數(shù)(其中),記函數(shù)的導(dǎo)函數(shù)為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意正實(shí)數(shù)恒成立?若存在,求出滿足條件的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)的單調(diào)減區(qū)間為,無(wú)遞增區(qū)間;(2)見(jiàn)解析

【解析】

I)求得也即的表達(dá)式,對(duì)求導(dǎo),由此求得的單調(diào)區(qū)間.II)解法一:利用的單調(diào)性,求得的零點(diǎn),由此求得關(guān)于的關(guān)系式.由于的導(dǎo)函數(shù),根據(jù)的單調(diào)性,可求得的最大值,利用這個(gè)最大值列不等式,用基本不等式等號(hào)成立的條件,求得的值.解法二:對(duì)分成兩類,利用求出的的范圍比較后求得的值.

(Ⅰ),

,∵,,∴恒成立,

的單調(diào)減區(qū)間為,無(wú)遞增區(qū)間;

(Ⅱ)解法一:由(Ⅰ)知上單調(diào)遞減,所以上必存在實(shí)數(shù)根,不妨記,即,可得 (*)

當(dāng)時(shí),,即,當(dāng)時(shí),,即,

所以上單調(diào)遞增,在上單調(diào)遞減,

所以

把(*)式代入可得,

依題意恒成立,又由基本不等式有,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,解得,所以

代入(*)式得,,所以,又∵,所以解得

綜上所述,存在實(shí)數(shù),使得對(duì)任意正實(shí)數(shù)恒成立

解法二:要使對(duì)恒成立,

時(shí),,解得,所以

時(shí),,解得,所以

依題意可知,①、②應(yīng)同時(shí)成立,則,又∵,所以解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)、,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)直線與曲線交于、兩點(diǎn),若直線斜率之積為,求證:直線過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 有極值,且函數(shù)的極值點(diǎn)是的極值點(diǎn),其中是自然對(duì)數(shù)的底數(shù).(極值點(diǎn)是指函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值)

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),若函數(shù)的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于區(qū)間[a,b](a<b),若函數(shù)同時(shí)滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是( )

A. 設(shè),則為實(shí)數(shù)的充要條件是為共軛復(fù)數(shù);

B. “直線與曲線C相切”是“直線與曲線C只有一個(gè)公共點(diǎn)”的充分不必要條件;

C. “若兩直線,則它們的斜率之積等于”的逆命題;

D. 是R上的可導(dǎo)函數(shù),“若的極值點(diǎn),則”的否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),曲線的上點(diǎn) 對(duì)應(yīng)的參數(shù),將曲線經(jīng)過(guò)伸縮變換后得到曲線,直線的參數(shù)方程為

(1)說(shuō)明曲線是哪種曲線,并將曲線轉(zhuǎn)化為極坐標(biāo)方程;

(2)求曲線上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,⊥平面,底面為梯形,, ,,,的中點(diǎn)

Ⅰ)證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是 (  )

A. “若,則,或”的否定是“若,或

B. a,b是兩個(gè)命題,如果a是b的充分條件,那么的必要條件.

C. 命題“,使 得”的否定是:“,均有

D. 命題“ 若,則”的否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)直線.

(1)求與圓相切,且與直線垂直的直線方程;

(2)在直線為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù)試求所有滿足條件的點(diǎn)的坐標(biāo).

【答案】(1);(2)答案見(jiàn)解析.

【解析】試題分析:

(1)設(shè)所求直線方程為,利用圓心到直線的距離等于半徑可得關(guān)于b的方程,解方程可得,則所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn),由題意可得,,然后證明為常數(shù)為即可.

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則據(jù)此得到關(guān)于的方程組,求解方程組可得存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

試題解析:

(1)設(shè)所求直線方程為,即,

∵直線與圓相切,∴,得,

∴所求直線方程為

(2)方法1:假設(shè)存在這樣的點(diǎn),

當(dāng)為圓軸左交點(diǎn)時(shí),;

當(dāng)為圓軸右交點(diǎn)時(shí),,

依題意,,解得,(舍去),或.

下面證明點(diǎn)對(duì)于圓上任一點(diǎn),都有為一常數(shù).

設(shè),則,

,

從而為常數(shù).

方法2:假設(shè)存在這樣的點(diǎn),使得為常數(shù),則

,將代入得,

,即

對(duì)恒成立,

,解得(舍去),

所以存在點(diǎn)對(duì)于圓上任一點(diǎn),都有為常數(shù).

點(diǎn)睛:求定值問(wèn)題常見(jiàn)的方法有兩種:

(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān).

(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值.

型】解答
結(jié)束】
22

【題目】已知函數(shù)的導(dǎo)函數(shù)為其中為常數(shù).

(1)當(dāng)時(shí),的最大值,并推斷方程是否有實(shí)數(shù)解;

(2)若在區(qū)間上的最大值為-3,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案