【題目】已知函數(shù)f(x)=(a∈R).
(Ⅰ)若f(1)=2,求函數(shù)y=f(x)-2x在[,2]上的值域;
(Ⅱ)當(dāng)a∈(0,)時(shí),試判斷f(x)在(0,1]上的單調(diào)性,并用定義證明你的結(jié)論.
【答案】(Ⅰ)[-,](Ⅱ)見解析
【解析】
(Ⅰ)根據(jù)題意,由f(1)=2可得,解可得a的值,即可得y=f(x)-2x的解析式,設(shè)g(x)=-x,分析易得g(x)在[,2]上為減函數(shù),據(jù)此分析函數(shù)g(x)的最值,即可得答案;
(Ⅱ)設(shè)0<x1<x2≤1,由作差法分析,即可得答案.
(Ⅰ)根據(jù)題意,函數(shù)f(x)=,
若f(1)=2,則=2,解可得a=,則f(x)==x+,
則y=f(x)-2x=-x,設(shè)g(x)=-x,分析易得g(x)在[,2]上為減函數(shù),
且g()=2-=,g(2)=-2=-;
故y=f(x)-2x在[,2]上的值域?yàn)?/span>[-,];
(Ⅱ)f(x)==2ax+,當(dāng)a∈(0,)時(shí),在(0,1]上為減函數(shù),
證明:設(shè)0<x1<x2≤1,
f(x1)-f(x2)=(2ax1+)-(2ax2+)=(2ax1x2-1),
又由a∈(0,)且0<x1<x2≤1,
則(x1-x2)<0,(2ax1x2-1)<0,
則f(x1)-f(x2)>0,
即函數(shù)f(x)在(0,1]上為減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線過點(diǎn),且傾斜角為。
(1)寫出直線的標(biāo)準(zhǔn)參數(shù)方程;
(2)設(shè)此直線與曲線( 為參數(shù))交于兩點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上,過點(diǎn)P作直線l的垂線所得的垂足稱為點(diǎn)P在直線l上的投影,由區(qū)域 中的點(diǎn)在直線x+y﹣2=0上的投影構(gòu)成的線段記為AB,則|AB|=( 。
A.2
B.4
C.3
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不過第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過點(diǎn)(3,-1)且與直線l平行,直線l2與直線l1關(guān)于直線y=1對(duì)稱,求直線l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知b+c=2acosB.
(1)證明:A=2B
(2)若△ABC的面積S= ,求角A的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與的直角坐標(biāo)方程;
(2)當(dāng)與有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn .
(1)求{an}的通項(xiàng)公式;
(2)求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)已知半徑為的圓的圓心M在軸上,圓心M的橫坐標(biāo)是整數(shù),且圓M與直線相切.
求:(Ⅰ)求圓M的方程;
(Ⅱ)設(shè)直線與圓M相交于兩點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com