【題目】(本題滿分10分)已知半徑為的圓的圓心M在軸上,圓心M的橫坐標(biāo)是整數(shù),且圓M與直線相切.
求:(Ⅰ)求圓M的方程;
(Ⅱ)設(shè)直線與圓M相交于兩點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題(1)求圓的方程有兩種方法:①幾何法,通過(guò)研究圓的性質(zhì)進(jìn)而求出圓的基本量.②代數(shù)法,即設(shè)出圓的方程,用待定系數(shù)法求解,利用待定系數(shù)法的關(guān)鍵是建立關(guān)于a,b,r或D,E,F的方程組.本題利用幾何性質(zhì);(2)利用圓心到直線的距離可判斷直線與圓的位置關(guān)系;也可利用直線的方程與圓的方程聯(lián)立后得到的一元二次方程的判別式來(lái)判斷直線與圓的位置關(guān)系.
試題解析:(1)設(shè)圓心為,因圓C與直線相切,故,又,所以
所求圓的方程為
(2)因直線與圓M相交于兩點(diǎn),所以圓心到直線的距離小于半徑
故,解得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a∈R).
(Ⅰ)若f(1)=2,求函數(shù)y=f(x)-2x在[,2]上的值域;
(Ⅱ)當(dāng)a∈(0,)時(shí),試判斷f(x)在(0,1]上的單調(diào)性,并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若對(duì)于任意的,若函數(shù)在區(qū)間上有最值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】借助計(jì)算機(jī)(器)作某些分段函數(shù)圖象時(shí),分段函數(shù)的表示有時(shí)可以利用函數(shù),例如要表示分段函數(shù)g(x)=總可以將g(x)表示為g(x)=xh(x-2)+(-x)h(2-x).
(1)設(shè)f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),請(qǐng)把函數(shù)f(x)寫(xiě)成分段函數(shù)的形式;
(2)已知G(x)=[(3a-1)x+4a]h(1-x)+logaxh(x-1)是R上的減函數(shù),求a的取值范圍;
(3)設(shè)F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函數(shù)F(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)若經(jīng)過(guò)點(diǎn)可以作出曲線的三條切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(k∈R)
(Ⅰ)若該函數(shù)是偶函數(shù),求實(shí)數(shù)k及f(log32)的值;
(Ⅱ)若函數(shù)g(x)=x+log3f(x)有零點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(2)=1,f(x+4)=2f(x)+f(1),則f(3)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列4個(gè)判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;
②函數(shù)f(x)=2x-x2只有兩個(gè)零點(diǎn);③函數(shù)y=2|x|的最小值是1;
④在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對(duì)稱.
其中正確命題的序號(hào)是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com