【題目】若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2-3,值域為{1,5}的“孿生函數(shù)”共有( )
A.10個
B.9個
C.8個
D.4個

【答案】B
【解析】由2x23=1,2x23=5得x的值為1,1,2,2,定義域為2個元素的集合有4個,定義域為3個元素的集合有4個,定義域為4個元素的集合有1個,因此共有9個“孿生函數(shù)”.
故答案為:B.
先弄清新定義孿生函數(shù)的含義,結(jié)合函數(shù)解析式,由已知的值域求出自變量x應取的值,再進行分析得到正確選項.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)時,證明:對于任意的成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品每件成本5元,售價14元,每星期賣出75件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值(單位:元,)的平方成正比,已知商品單價降低1元時,一星期多賣出5件.

(1)將一星期的商品銷售利潤表示成的函數(shù);

(2)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓(a>b>0)的左、右焦點為F1、F2,點A在橢圓上,且與x軸垂直.

(1)求橢圓的方程;

(2)過A作直線與橢圓交于另外一點B,求AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.

(1)設(shè)一次訂購量為個,零件的實際出廠單價為元,寫出函數(shù)的表達式;

(2)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1000個,利潤又是多少元?(工廠售出一個零件的利潤=實際出廠單價-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))和函數(shù),,).問:(1)證明:上是增函數(shù);

(2)把函數(shù)寫成分段函數(shù)的形式并畫出它們的圖象,總結(jié)出的圖象是如何由的圖象得到的.請利用上面你的結(jié)論說明:的圖象關(guān)于對稱;

(3)當,,若對于任意的恒成立的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在髙三的全體名學生中隨機抽取名學生的體檢表,并得到如圖的頻分布直方圖.

(1)若直方中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在以下的人數(shù);

(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年級名次在名和名的學生進行了調(diào)查,得到表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否有的把認為視力與學習成績有關(guān)系?

3在(2調(diào)查的名學生中,按照分層抽樣在不近視的學生中抽取了人,進一步調(diào)查他們良好的護眼,求在這人中任取人,恰好有人的年級名次在名的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為實數(shù),),

(1)若,且函數(shù)的值域為,求得解析式;

(2)在(1)的條件下,當時,是單調(diào)函數(shù),求實數(shù)的取值范圍;

(3)設(shè),,,且為偶函數(shù),判斷是否大于零,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以橢圓的中心為圓心,為半徑的圓稱為該橢圓的“準圓”.設(shè)橢圓的左頂點為,左焦點為,上頂點為,且滿足,.

1求橢圓及其“準圓”的方程;

2)若橢圓的“準圓”的一條弦(不與坐標軸垂直)與橢圓交于、兩點,試證明:當時,試問弦的長是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案