【題目】已知橢圓C: =1,(a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0)且不垂直于x軸直線l橢圓C相交于A、B兩點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)求 取值范圍;
(Ⅲ)若B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

【答案】解:(Ⅰ)由題意知 ,∴ ,即 , 又 ,∴a2=4,b2=3,
故橢圓的方程為 ;
(Ⅱ)解:由題意知直線l的斜率存在,設(shè)直線l的方程為y=k(x﹣4),
得:(4k2+3)x2﹣32k2x+64k2﹣12=0.
由△=(﹣32k22﹣4(4k2+3)(64k2﹣12)>0得:
設(shè)A(x1 , y1),B (x2 , y2),則
∴y1y2=k(x1﹣4)k(x2﹣4)= ,
,
,∴ ,則
的取值范圍是 ;
(Ⅲ)證明:∵B、E兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),∴E(x2 , ﹣y2),
直線AE的方程 ,令y=0,得 ,
又y1=k(x1﹣4),y2=k(x2﹣4),
,
將①代入上式并整理得:x=1,
∴直線AE與x軸交于定點(diǎn)(1,0)
【解析】(Ⅰ)由橢圓的離心率得到a,b的關(guān)系式 ,由原點(diǎn)到直線x﹣y+ =0的距離求得b,則a可求,橢圓方程可求;(Ⅱ)由題意知直線l的斜率存在,設(shè)直線l的方程為y=k(x﹣4),聯(lián)立直線方程與橢圓方程,由△>0得k的范圍,利用根與系數(shù)的關(guān)系得到A,B兩點(diǎn)的橫坐標(biāo)的和與積,代入 ,結(jié)合k的范圍可得 取值范圍;(Ⅲ)由B、E兩點(diǎn)關(guān)于x軸對(duì)稱(chēng),得到E(x2 , ﹣y2),寫(xiě)出直線AE的方程,求出直線在x軸上的截距x=1,則可說(shuō)明直線AE與x軸交于定點(diǎn)(1,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱錐S﹣ABC中,AB= ,M是SC的中點(diǎn),AM⊥SB,則正三棱錐S﹣ABC外接球的球心到平面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:對(duì)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘亞歷山大時(shí)期的數(shù)學(xué)家帕普斯(Pappus,約300~約350)在《數(shù)學(xué)匯編》第3卷中記載著一個(gè)定理:“如果同一平面內(nèi)的一個(gè)閉合圖形的內(nèi)部與一條直線不相交,那么該閉合圖形圍繞這條直線旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積等于閉合圖形面積乘以重心旋轉(zhuǎn)所得周長(zhǎng)的積.”如圖,半圓的直徑,點(diǎn)是該半圓弧的中點(diǎn),半圓弧與直徑所圍成的半圓面(陰影部分不含邊界)的重心位于對(duì)稱(chēng)軸上.若半圓面繞直徑所在直線旋轉(zhuǎn)一周,則所得到的旋轉(zhuǎn)體的體積為__________,___________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若存在唯一的零點(diǎn),且,則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱中,各棱長(zhǎng)均為4, 、分別是,的中點(diǎn).

(1)求證:平面

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知球O是正三棱錐(底面為正三角形,頂點(diǎn)在底面的射影為底面中心)A-BCD的外接球,BC=3,,點(diǎn)E在線段BD上,且BD=3BE,過(guò)點(diǎn)E作圓O的截面,則所得截面圓面積的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),,動(dòng)點(diǎn)P滿足

若點(diǎn)P為曲線C,求此曲線的方程;

已知直線l在兩坐標(biāo)軸上的截距相等,且與中的曲線C只有一個(gè)公共點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以9連勝的不敗戰(zhàn)績(jī)贏得第28屆亞錦賽冠軍,同時(shí)拿到亞洲唯一1張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽MVP(最有價(jià)值球員),下表是易建聯(lián)在這9場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).

比分

易建聯(lián)技術(shù)統(tǒng)計(jì)

投籃命中

罰球命中

全場(chǎng)得分

真實(shí)得分率

中國(guó)91﹣42新加坡

3/7

6/7

12

59.52%

中國(guó)76﹣73韓國(guó)

7/13

6/8

20

60.53%

中國(guó)84﹣67約旦

12/20

2/5

26

58.56%

中國(guó)75﹣62哈薩克期坦

5/7

5/5

15

81.52%

中國(guó)90﹣72黎巴嫩

7/11

5/5

19

71.97%

中國(guó)85﹣69卡塔爾

4/10

4/4

13

55.27%

中國(guó)104﹣58印度

8/12

5/5

21

73.94%

中國(guó)70﹣57伊朗

5/10

2/4

13

55.27%

中國(guó)78﹣67菲律賓

4/14

3/6

11

33.05%

注:(1)表中a/b表示出手b次命中a次;
(2)TS%(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:
TS%=.全場(chǎng)得分/2x(投籃出手次數(shù)+0.44x罰球出手次數(shù))
(Ⅰ)從上述9場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中TS%超過(guò)50%的概率;
(Ⅱ)從上述9場(chǎng)比賽中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中TS%至少有一場(chǎng)超過(guò)60%的概率;
(Ⅲ)用x來(lái)表示易建聯(lián)某場(chǎng)的得分,用y來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷y與x之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案