【題目】在正三棱錐S﹣ABC中,AB= ,M是SC的中點(diǎn),AM⊥SB,則正三棱錐S﹣ABC外接球的球心到平面ABC的距離為 .
【答案】
【解析】解:取AC的中點(diǎn)N,連接BN,因?yàn)镾A=SC,所以AC⊥SN,由∵△ABC是正三角形,∴AC⊥BN. 故AC⊥平面SBN,AC⊥BC.
又∵AM⊥SB,AC∩AM=A,∴SB⊥平面SAC,SB⊥SA且SB⊥SC
故得到SB,SA,SC是三條兩兩垂直的.可以看成是一個(gè)正方體切下來的一個(gè)正三棱錐.
故外接圓直徑2R=
∵AB= ,∴SA=1.
那么:外接球的球心與平面ABC的距離為正方體對(duì)角線的 ,即d= .
所以答案是: .
【考點(diǎn)精析】利用棱錐的結(jié)構(gòu)特征對(duì)題目進(jìn)行判斷即可得到答案,需要熟知側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查每天人們使用手機(jī)的時(shí)間,我校某課外興趣小組在天府廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩手機(jī)超過6小時(shí)的用戶列為“手機(jī)控”,否則稱其為“非手機(jī)控”,調(diào)查結(jié)果如下:
手機(jī)控 | 非手機(jī)控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“手機(jī)控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機(jī)控”和“非手機(jī)控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人,記這3人中“手機(jī)控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望. 參考公式: .
參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.456[ | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點(diǎn)是線段上的動(dòng)點(diǎn),則下列說法錯(cuò)誤的是( )
A. 無(wú)論點(diǎn)在上怎么移動(dòng),異面直線與所成角都不可能是
B. 無(wú)論點(diǎn)在上怎么移動(dòng),都有
C. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),才有與與相交于一點(diǎn),記為點(diǎn),且
D. 當(dāng)點(diǎn)移動(dòng)至中點(diǎn)時(shí),直線與平面所成角最大且為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場(chǎng)的30天中,其銷售價(jià)格(元)和時(shí)間(天)的關(guān)系如圖所示.
(1)求銷售價(jià)格(元)和時(shí)間(天)的函數(shù)關(guān)系式;
(2)若日銷售量(件)與時(shí)間(天)的函數(shù)關(guān)系式是 ,問該產(chǎn)品投放市場(chǎng)第幾天時(shí),日銷售額(元)最高,且最高為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù) 有以下四個(gè)命題:
①對(duì)于任意的,都有; ②函數(shù)是偶函數(shù);
③若為一個(gè)非零有理數(shù),則對(duì)任意恒成立;
④在圖象上存在三個(gè)點(diǎn),,,使得為等邊三角形.其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=mlnx+(m﹣1)x.
(1)若f(x)存在最大值M,且M>0,求m的取值范圍.
(2)當(dāng)m=1時(shí),試問方程xf(x)﹣ =﹣ 是否有實(shí)數(shù)根,若有,求出所有實(shí)數(shù)根;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)A在x軸上,點(diǎn)B的坐標(biāo)為(1,0).且點(diǎn)C與點(diǎn)D在函數(shù)f(x)= 的圖象上.若在矩形ABCD內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自空白部分的概率等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1,(a>b>0)的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0)且不垂直于x軸直線l橢圓C相交于A、B兩點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)求 取值范圍;
(Ⅲ)若B關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com