【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)當 時,求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

【答案】
(1)解:f'(x)=ex+(x﹣2)ex+2ax+4a,

∵函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,∴f'(x)≥0在(0,+∞)上恒成立.

∴ex+(x﹣2)ex+2ax+4a≥0,∴ ,

,

,∴


(2)解:[f'(x)]′=xex+2a>0,

∴y=f'(x)在(0,+∞)上單調(diào)遞增又f'(0)=4a﹣1<0,f'(1)=6a>0,

∴存在t∈(0,1)使f'(t)=0

∴x∈(0,t)時,f'(x)<0,x∈(t,+∞)時,f'(x)>0,

當x=t時, 且有f'(t)=et(t﹣1)+2a(t+2)=0,

由(1)知 在t∈(0,+∞)上單調(diào)遞減, ,且 ,

∴t∈(0,1).

,

∴f(1)<f(t)<f(0),﹣e<f(t)<﹣1,

∴f(x)的最小值的取值范圍是(﹣e,﹣1)


【解析】(1)求出函數(shù)的導數(shù)f'(x)=ex+(x﹣2)ex+2ax+4a,通過f'(x)≥0在(0,+∞)上恒成立.得到 ,構(gòu)造函數(shù),利用導函數(shù)的單調(diào)性以及最值求解即可.(2)通過[f'(x)]′=xex+2a>0,數(shù)碼y=f'(x)在(0,+∞)上單調(diào)遞增,利用零點判定定理說明存在t∈(0,1)使f'(t)=0,判斷x=t, ,推出 .即 在t∈(0,+∞)上單調(diào)遞減,通過求解函數(shù)的最值,求解f(x)的最小值的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解利用導數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=﹣x+1與橢圓 + =1(a>b>0)相交于A、B兩點.
①若橢圓的離心率為 ,焦距為2,求線段AB的長;
②若向量 與向量 互相垂直(其中O為坐標原點),當橢圓的離心率e∈[ ]時,求橢圓的長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)當 時,求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是首項為19,公差為-2的等差數(shù)列,Sn為{an}的前n項和.

(1)求通項anSn;

(2)設(shè){bnan}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年,在國家創(chuàng)新驅(qū)動戰(zhàn)略下,北斗系統(tǒng)作為一項國家高科技工程,一個開放型的創(chuàng)新平臺,1400多個北斗基站遍布全國,上萬臺設(shè)備組成星地“一張網(wǎng)”,國內(nèi)定位精度全部達到亞米級,部分地區(qū)達到分米級,最高精度甚至可以達到厘米或毫米級。最近北斗三號工程耗資元建成一大型設(shè)備,已知這臺設(shè)備維修和消耗費用第一年為元,以后每年增加元(是常數(shù)),用表示設(shè)備使用的年數(shù),記設(shè)備年平均維修和消耗費用為,即 (設(shè)備單價設(shè)備維修和消耗費用)設(shè)備使用的年數(shù).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)當, 時,求這種設(shè)備的最佳更新年限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在考試測評中,常用難度曲線圖來檢測題目的質(zhì)量,一般來說,全卷得分高的學生,在某道題目上的答對率也應(yīng)較高,如果是某次數(shù)學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數(shù)段,縱坐標為該分數(shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數(shù)學成績的好與壞
C.分數(shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電腦公司有6名產(chǎn)品推銷員,其中工作年限與年推銷金額數(shù)據(jù)如下表:

推銷員編號

1

2

3

4

5

工作年限/年

3

5

6

7

9

推銷金額/萬元

2

3

4

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)求年推銷金額關(guān)于工作年限的線性回歸方程;

(3)若第6名推銷員的工作年限為11年,試估計他的年推銷金額.

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

已知公比為整數(shù)的正項等比數(shù)列滿足: ,

1)求數(shù)列的通項公式;

2)令,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓

(1)直線過點,被圓截得的弦長為,求直線的方程;

(2)直線的的斜率為1,且被圓截得弦,若以為直徑的圓過原點,求直線的方程.

查看答案和解析>>

同步練習冊答案