【題目】如圖,在四棱錐中,是正三角形,四邊形是正方形.
(Ⅰ)求證:;
(Ⅱ)若,求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】網(wǎng)絡游戲要實現(xiàn)可持續(xù)發(fā)展,必須要發(fā)展綠色網(wǎng)游.為此,國家文化部將從內(nèi)容上對網(wǎng)游作出強制規(guī)定,國家信息產(chǎn)業(yè)部還將從技術(shù)上加強對網(wǎng)游的強制限制,開發(fā)限制網(wǎng)癮的疲勞系統(tǒng),現(xiàn)已開發(fā)的“游戲防沉迷系統(tǒng)”規(guī)則如下:
①小時以內(nèi)(含小時)為健康時間,玩家在這段時間內(nèi)獲得的累積經(jīng)驗值(單位:)與游戲時間(小時)滿足關(guān)系式:(為常數(shù));
②小時到小時(含小時)為疲勞時間,玩家在這段時間內(nèi)獲得的經(jīng)驗值為(即累積經(jīng)驗值不變);
③超過小時為不健康時間,累積經(jīng)驗值開始損失,損失的經(jīng)驗值與不健康時間成正比例關(guān)系,比例系數(shù)為.
(1)當時,寫出累積經(jīng)驗值與游戲時間的函數(shù)關(guān)系式,并求出游戲小時的累積經(jīng)驗值;
(2)定義“玩家愉悅指數(shù)”為累積經(jīng)驗值與游戲時間的比值,記作;若,開發(fā)部門希望在健康時間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函數(shù),且f(1).
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(1)+f(1﹣3mx﹣2)=0在區(qū)間[0,1]內(nèi)只有一個解,求m取值集合;
(3)是否存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,準線為,在拋物線上任取一點,過做的垂線,垂足為.
(1)若,求的值;
(2)除外,的平分線與拋物線是否有其他的公共點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上存在兩個不同零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,底面是邊長為2的菱形,.,且平面,,點分別是線段上的中點,在上.且.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面的成角的正弦值;
(Ⅲ)請畫出平面與四棱錐的表面的交線,并寫出作圖的步驟.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間.
(II)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍.
(III)過坐標原點作曲線的切線,求切線的橫坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,若橢圓上一點滿足,過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)過點作軸的垂線,交橢圓于,求證:存在實數(shù),使得.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com