【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項和Tn .
【答案】
(1)解:因為 ,所以,2a1=3+3,故a1=3,
當(dāng)n>1時, ,
此時, ,即 ,
所以,
(2)解:因為anbn=log3an,所以 ,
當(dāng)n>1時, ,
所以 ,
當(dāng)n>1時, .
所以 ,
兩式相減,得 ,
所以 ,經(jīng)檢驗,n=1時也適合,
綜上可得:
【解析】(1)通過 可知 ,化簡可知 ,進(jìn)而驗證當(dāng)n=1時是否成立即可;(2)通過(1)即anbn=log3an可知當(dāng)n>1時 ,利用錯位相減法計算可知 ,進(jìn)而檢驗當(dāng)n=1時是否成立即可.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,已知A,B為拋物線上的兩個動點(diǎn),且滿足∠AFB=120°,過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則 的最大值為( )
A.2
B.
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個動點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)已知函數(shù)g(x)=log ,當(dāng)x∈[ , ]時,不等式 f(x)≥g(x)有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若方程有兩根,求的取值范圍;
(Ⅱ)在(Ⅰ)的前提下,設(shè),求證: 隨著的減小而增大;
(Ⅲ)若不等式恒成立,求證: ().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求在的最大值;
(2)討論函數(shù)的單調(diào)性;
(3)若在定義域內(nèi)恒成立,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),圓C: ,
(1)過點(diǎn)向圓C引切線l,求切線l的方程;
(2)過點(diǎn)A作直線 交圓C于P,Q,且,求直線的斜率k;
(3)定點(diǎn)M,N在直線 上,對于圓C上任意一點(diǎn)R都滿足,試求M,N兩點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com